104 Y. Huang and X.W. Tangpong
9. Kamath GM, Wereley NM, Jolly MR (1999) Characterization of magnetorheological
helicopter lag dampers. J Am Helicopter Soc 44:234–248
10. Liao WH, Wang KW (1997) On the analysis of viscoelastic materials for active constrained
layer damping treatments. J Sound Vib 207:319–334
11. Brackbill CR, Lesieutre GA, Smith EC (2000) Characterization and modeling of the low strain
amplitude and frequency dependent behavior of elastomeric damper materials. J Am Helicopter
Soc 45:34–42
12. Koratkar N, Wei BQ, Ajayan PM (2002) Carbon nanotube films for damping applications. Adv
Mater 14:997–1000
13. Suhr J, Koratkar N (2008) Energy dissipation in carbon nanotube composites: a review. J Mater
Sci 43:4370–4382
14. Wang Z, Liang ZY, Wang B (2004) Processing and property investigation of single-walled
carbon nanotubes (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos Part A:
Appl Sci Manuf 35:1225–1232
15. Teo ETH, Yung WKP, Chua DHC (2007) A carbon nanomattress: A new nanosystem with
intrinsic, tunable, damping properties. Adv Mater 19:2941–2945
16. Koratkar NA, Suhr J, Joshi A (2005) Characterizing energy dissipation in single-walled carbon
nanotube polycarbonate composites. Appl Phys Lett 87:063102
17. Suhr J, Koratkar N (2006) Effect of pre-strain on interfacial friction damping in carbon nan-
otube polymer composites. J Nanosci Nanotechnol 6:483–486
18. Suhr J, Zhang W, Ajayan PM (2006) Temperature-activated interfacial friction damping in
carbon nanotube polymer composites. Nano Lett 6:219–223
19. Zhou X, Shin E, Wang KW (2004) Interfacial damping characteristics of carbon nanotube-
based composites. Compos Sci Technol 64:2425–2437
20. Koratkar NA, Wei BQ, Ajayan PM (2003) Multifunctional structural reinforcement featuring
carbon nanotube films. Compos Sci Technol 63:1525–1531
21. Suhr J, Koratkar N, Ajayan PM (2004) Damping characterization of carbon nanotube thin
films. Proc SPIE 5386:153–161
22. Liu A, Huang JH, Wang KW, Bakis CE (2006) Effects of interfacial friction on the damping
characteristics of composites containing randomly oriented carbon nanotube ropes. J Intell
Mater Syst Struct 17:217–229
23. Mahmoodi SN, Khadem SE, Jalili N (2006) Theoretical development and closed-form solution
of nonlinear vibrations of directly excited nanotube-reinforced composite cantilevered beam.
Arch Appl Mech 75:153–163
24. Kireitseu M, Hui D, Tomlinson G (2008) Advanced shock-resistant and vibration damping of
nanoparticle-reinforced composite material. Compos Part B: Eng 39:128–138
25. Iwan WD (1966) A distributed-element model for hysteresis and its steady-state dynamic re-
sponse. J Appl Mech 33:893–900
26. Iwan WD (1967) On a class of models for the yielding behavior of continuous and composite
systems. J Appl Mech 89:612–617
27. Al-Bender F, Lampaert V, Swevers J (2004) Modeling of dry sliding friction dynamics: from
heuristic models to physically motivated models and back. Chaos 14:446–460
28. Spanos P-TD (1979) Hysteretic structural vibrations under random load. J Acoust Soc Am
65:404–410
29. Segalman DJ (2001) An initial overview of Iwan modeling for mechanical joints, Technical
Report, SAND2001–0811, Sandia National Laboratories
30. Mccarthy B, Coleman JN, Curran SA (2000) Observation of site selective binding in a polymer
nanotube composite. J Mater Sc Lett 19:2239–2241
31. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms
in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870
32. Suhr J, Koratkar NA, Keblinski P, Ajayan PM (2005) Viscoelasticity in carbon nanotube com-
posites. Nat Mater 4:134–137