[98] E. Neumann, S. Kakorin, K. To
¨
nsing, Fundamentals of electroporative delivery of drugs and
genes, Bioelectrochem. Bioenerg. 48 (1999) 3–16.
[99] J. Teissie
´
, M. Golzio, M.P. Rols, Mechanisms of cell membrane electropermeabilization: a
minireview of our present (lack of c
ˇ
) knowledge, Biochim. Biophys. Acta 1724 (2005) 270–
280.
[100] S. Orlowski, L.M. Mir, Cell electroporation: a new tool for biochemical and pharmacological
studies, Biochim. Biophys. Acta 1154 (1993) 51–62.
[101] M.J. Jaroszeski, R. Heller, R. Gilbert, Electrochemotherapy, Electrogenetherapy and Trans-
dermal Drug Delivery: Electrically Mediated Delivery of Molecules to Cells, Humana Press,
Totowa, NJ, 1999.
[102] J.C. Maxwell, Treatise on Electricity and Magnetism, Oxford University Press, London, 1873.
[103] K.S. Cole, Membrane, Ions and Impulses, University of California Press, Los Angeles, 1968.
[104] K.R. Foster, H.P. Schwan, Dielectric properties of tissues, in: C. Polk, E. Postow (Eds.),
Handbook of Biological Effects of Electromagnetic Fields, CRC Press, Florida, 1986, pp. 28–96.
[105] J.D. Jackson, Classical Electrodynamics, Wiley, New York, 1999.
[106] U. Zimmermann, The effect of high-intensity electric pulses on eukaryotic cell membranes, in:
U. Zimmermann, G.A. Neil (Eds.), Electromanipulation of Cells, CRC press, London, 1996,
pp. 1–105.
[107] E. Tekle, R.D. Astumian, P.B. Chock, Electro-permeabilization of cell membranes: effect of the
resting membrane potential, Biochem. Biophys. Res. Commun. 172 (1990) 282–287.
[108] J. Teissie
´
, M.P. Rols, An experimental evaluation of the critical potential difference inducing
cell membrane electropermeabilization, Biophys. J. 65 (1993) 409–413.
[109] V.H. Pauly, H.P. Schwan, ber die Impendanz einer Suspension von kugelfrmigen Teilchen mit
einer Schale, Z. Naturforsch. 14b (1959) 125–131.
[110] T. Kotnik, F. Bobanovic
´
, D. Miklavc
ˇ
ic
ˇ
, Sensitivity of transmembrane voltage induced by applied
electric fields: a theoretical analysis, Bioelectrochem. Bioenerg. 43 (1997) 285–291.
[111] S. Takashima, Electrical Properties of Biopolimers and Membranes, Adam Hilger, Bristol,
1989.
[112] K.H. Schoenbach, S.J. Beebe, E.S. Buescher, Intracellular effect of ultrashort electrical pulses,
Bioelectromagnetics 22 (2001) 440–448.
[113] T. Kotnik, D. Miklavc
ˇ
ic
ˇ
, T. Slivnik, Time course of transmembrane voltage induced by time-
varying electric fields-a method for theoretical analysis and its application, Bioelectrochem.
Bioenerg. 45 (1998) 3–16.
[114] R. Susil, D. S
ˇ
emrov, D. Miklavc
ˇ
ic
ˇ
, Electric field-induced transmembrane potential depends on
cell density and organization, Electro Magnetobiol. 17 (1998) 391–399.
[115] M. Pavlin, N. Pavs
ˇ
elj, D. Miklavc
ˇ
ic
ˇ
, Dependence of induced transmembrane potential on cell
density arrangement and cell position inside a cell system, IEEE Trans. Biomed. Eng. 49 (2002)
605–612.
[116] M. Kummrow, W. Helfrich, Deformation of giant lipid vesicles by electric fields, Phys. Rew. A
44 (1991) 8356–8360.
[117] K.J. Mu
¨
ller, V.L. Sukhorukov, U. Zimmermann, Reversible electropermeabilization of mam-
malian cells by high-intensity, ultra-short pulses of submicrosecond duration, J. Membr. Biol.
184 (2001) 161–170.
[118] R.P. Joshi, Q. Hu, K.H. Schoenbach, H. P. Hjalmarson, Theoretical predictions of electro-
mechanical deformation of cells subjected to high voltages for membrane electroporation, Phys.
Rev. E, 65 (2002) 021913.
[119] S.I. Sukharev, V.A. Klenchin, S.M. Serov, L.V. Chernomordik, Y.A. Chizmadzhev, Electrop-
oration and electrophoretic DNA transfer into cells. The effect of DNA interaction with
electropores, Biophys. J. 63 (1992) 1320–1327.
[120] M.P. Rols, C. Delteil, M. Golzio, P. Dumond, S. Cros, J. Teissie
´
, In vivo electrically mediated
protein and gene transfer in murine melanoma, Nat. Biotechnol. 16 (1998) 168–171.
[121] S. Satkauskas, M.F. Bureau, M. Puc, A. Mahfoudi, D. Scherman, D. Miklavc
ˇ
ic
ˇ
D, L.M. Mir,
Mechanisms of in vivo DNA electrotransfer: respective contributions of cell elect-
ropermeabilization and DNA electrophoresis, Mol. Ther. 5 (2002) 133–140.
M. Pavlin et al.224