14.104 CHAPTER FOURTEEN
Traceability of materials and components to individual units is required and each is se-
rialized. A comprehensive quality assurance program is also implemented. One to two per-
cent of cells built are tested under conditions similar to those seen under actual use conditions
as part of a quality assurance program.
REFERENCES
1. J. P. Gabano, Lithium Batteries, Academic, London, 1983.
2. D. MacArthur G. Blomgren, and R. Powers, ‘‘Lithium and Lithium Ion Batteries, 2000,’’ Powers
Associates, Westlake Ohio (2000).
3. Technical data, Foote Mineral Co., Exton, Pa; Lithium Corp. of America, Gastonia, N.C.
4. H. R. Grady, ‘‘Lithium Metal for the Battery Industry,’’ J. Power Sources 5:127 (1980), Elsevier
Sequoia, Lausanne, Switzerland.
5. J. T. Nelson and C. F. Green, ‘‘Organic Electrolyte Battery Systems,’’ U.S. Army Material Command
Rep. HDL-TR-1588, Washington, D.C., Mar. 1972.
J. O. Besenhard and G. Eichinger, ‘‘High Energy Density Lithium Cells, pt. I, Electrolytes and
Anodes,’’ J. Electroanal. Chem. 68:1 (1976), Elsevier Sequoia, Lausanne, Switzerland.
G. Eichinger and J. O. Besenhard, ‘‘High Energy Density Lithium Cells, pt. II, Cathodes and Com-
plete Cells,’’ J. Electroanal. Chem. 72:1 (1980), Elsevier Sequoia, Lausanne, Switzerland.
6. F. Deligiannis, B. V. Ratnakumar, H. Frank, E. Davies, and S. Surampudi, Proc. 38th Power Sources
Conf., 373–377 (1996), Cherry Hill, N.J.
7. A. N. Dey, ‘‘Lithium Anode Film and Organic and Inorganic Electrolyte Batteries,’’ in Thin Solid
Films, vol. 43, Elsevier Sequoia S. A., Lausanne, Switzerland, 1977, p. 131.
8. S. Gilman and W. Wade, ‘‘The Reduction of Sulfuryl Chloride at Teflon-Bonded Carbon Cathodes,’’
J. Electrochem. Soc. 127:1427 (1980).
9. A. Meitav and E. Peled, ‘‘Calcium-Ca(AlCl
4
)
2
-Thionyl Chloride Cell: Performance and Safety,’’ J.
Electrochem. Soc. 129:3 (1982).
10. R. L. Higgins and J. S. Cloyd, ‘‘Development of the Calcium-Thionyl Chloride Systems,’’ Proc.
29th Power Sources Conf., Electrochemical Society, Pennington, N.J., June 1980.
M. Binder, S. Gilman, and W. Wade, ‘‘Calcium-Sulfuryl Chloride Primary Cell,’’ J. Electrochem.
Soc. 129:4 (1982).
11. E. S. Takeuchi and W. C. Thiebolt, ‘‘The Reduction of Silver Vanadium Oxide in Lithium / Silver
Vanadium Oxide Cells,’’ J. Electrochem. Soc. 135, No. 11, Nov. 1988.
E. S. Takeuchi, ‘‘Lithium / Solid Cathode Cells for Medical Applications,’’ Proc. Int. Battery Seminar,
Boca Raton, Fla, 1993.
A. Crespi, ‘‘The Characterization of Silver Vanadium Cathode Material by High-Resolution Electron
Microscopy,’’ Proc. 7th Int. Meet. Lithium Batteries, Boston, Mass., May 1994.
12. N. I. Sax, Dangerous Properties of Industrial Materials, Van Nostrand Reinhold, New York, N.Y.
13. Transportation, Code of Federal Regulations CFR 49, U.S. Government Printing Office, Washington,
D.C.; Exemption DOT-E-7052, Department of Transportation, Washington, D.C.: ‘‘Technical Instruc-
tions for the Safe Transport of Dangerous Goods by Air,’’ International Civil Aviation Organization,
DOC 9284-AN / 905, Montreal, Quebec, Canada.
14. E. H. Reiss, ‘‘Considerations in the Use and Handling of Lithium-Sulfur Dioxide Batteries,’’ Proc.
29th Power Sources Conf., Electrochemical Society, Pennington, N.J., June 1980.
15. Technical Standard Order: TSO-C142, Lithium Batteries, U.S. Dept. of Transportation, Federal Avi-
ation Administration, Washington, D.C. (2000).
16. T. B. Reddy, Modern Battery Technology, Sec. 5.2, C. D. S. Tuck, ed., Ellis Horwood, N.Y. (1991).
17. M. Mathews, Proc. 39th Power Sources Conf., pp. 77–80 (2000), Cherry Hill, N.J.
18. M. Sink, Proc. 38th Power Sources Conf., pp. 187–190 (1998), Cherry Hill, N.J.