Imaging Methodologies 325
77. N. C. Ferreira, R. Trébossen, M.-C. Grégoire, B. Bendriem. Influence of malfunc-
tioning block detectors on the calculation of single detector efficiencies in PET.
IEEE Trans. Nucl. Sci., 46:1062–1069, 1999.
78. H. Müller-Gärtner, J. Links, J. L. Prince. Measurement of radiotracer concen-
tration in brain gray matter using positron emission tomography: MRI-based
correction for partial volume effects. J. Cereb. Blood Flow Metab., 12:571–583, 1992.
79. W. W. Moses, S. E. Derenzo, T. F. Budinger. PET detector modules based on novel
detector technologies. Nucl. Instr. Meth. Phys. Res. A, 352:189–194, 1994.
80. M. Defrise, P. Kinahan. Data Acquisition and Image Reconstruction for 3D PET.
In B. Bendriem, D. W. Townsend, eds., The Theory and Practice of 3D PET. Kluwer
Academic, Dordrecht, 1998.
81. P. P. Bruyant. Analytic and iterative reconstruction algorithms in SPECT. J. Nucl.
Med., 43:1343–1358, 2002.
82. P. E. Kinahan, M. Defrise, R. Clackdoyle.Analytic image eeconstruction methods.
In M. N. Wernick, J. N. Aarsvold, eds. Emission Tomography: The Fundamentals of
SPECT and PET. San Diego, CA, Elsevier, 2004.
83. R. B. Blackman, J. Tukey. Particular Pairs of Windows. In The Measurement of Power
Spectra, From the Point of View of Communications Engineering. Dover, New York,
98–99, 1959.
84. J. A. Fessler. Penalized weighted least squares image reconstruction for positron
emission tomography. IEEE Trans. Med. Imag., 13(2):290–300, 1994.
85. A. Macovski. Tomography. In T. Kailath, ed. Medical Imaging Systems. Prentice-
Hall, Englewoods Cliffs, NJ, pp. 106–144, 1997.
86. L. A. Shepp, Y. Vardi. Maximum likelihood reconstruction for emission tomog-
raphy. IEEE Trans. Med. Imag., MI-1:113–122, 1982.
87. E. Veklerov, J. Llacer. Stopping rule for the MLE algorithm based on statistical
hypothesis testing. Med. Imag., IEEE Trans. Med. Imag., 6(4):313–319, 1987.
88. V. V. Selivanov, D. Lapointe, M. Bentourkia, R. Lecomte. Cross-validation stop-
ping rule for ML-EM reconstruction of dynamicPET series: Effect on image
quality and quantitative accuracy. IEEE Trans. Nucl. Sci., 48(3-Part 2):883–889,
2001.
89. P. E. Kinahan, J. G. Rogers. Analytic three-dimensional image reconstruction
using all detected events. IEEE Trans. Nucl. Sci., NS-36:964–968, 1989.
90. H. M. Hudson, R. S. Larkin. Accelerated image reconstruction using ordered
subsets of projection data. IEEE Trans. Med. Imag., 13:601–609, 1994.
91. C. Michel, X. Liu, S. Sanabria et al. Weighted schemes applied to 3D-OSEM
reconstruction in PET. Nucl. Sci. Symp. Conf. Rec., Seattle, USA, 3:1152–1157, 1999.
92. P. E. Kinahan, J. G. Rogers. Analytic three-dimensional image reconstruction
using all detected events. IEEE Trans. Nucl. Sci., NS-36:964–968, 1989.
93. J. G. Colsher. Fully three-dimensional positron emission tomography. Phys. Med.
Biol., 20:103–115, 1980.
94. J.-S. Liow, S.C. Strother, K. Rehm, A. Rottenburg. Improved resolution for PET
volume-imaging through three-dimensional iterative reconstruction. J. Nucl.
Med., 38:1623–1630, 1997.
95. J. Qi, R. M. Leahy, S. R. Cherry, A. Chatziioannou, T. H. Farquhar. High resolution
3D Bayesian image reconstruction using the small animal microPET scanner.
Phys. Med. Biol., 43:1001–1013, 1998.
96. P. E. Kinahan, C. Michel, M. Defrise, D. W. Townsend, M. Sibomana, M. Lonneux,
D. F. Newport, J. D. Luketich. Fast iterative image reconstruction of 3D PET