Файлы
Обратная связь
Для правообладателей
Найти
Лекции по гидрогазодинамике
Файлы
Академическая и специальная литература
Механика
Механика жидкостей и газов
Назад
Скачать
Подождите немного. Документ загружается.
h
+
v
2
2
=
const
.
h
=
C
p
·
T
C
p
T
0
=
T
+
v
2
2
C
p
.
C
p
C
V
k
R
C
p
C
V
=
k
−
,
C
p
−
C
V
=
R
−
.
C
p
C
V
C
p
=
k
R
k
−
1
,
T
0
=
T
+
k
−
1
2
v
2
k
R
,
T
0
T
=
1
+
k
−
1
2
M
2
,
M
=
v
/c
k
=
1
.
4;
R
=
287
/
[
·
K
]
T
0
=
T
+
v
2
2000
.
−
56
C
v
=
2200
/
≈
611
/c
T
0
=
131
C
∼
8
/c
30000
K
K
p
0
p
=
T
0
T
!
k
/
(
k
−
1)
,
ρ
0
ρ
=
T
0
T
!
1
/
(
k
−
1)
.
[∆
ρ
/
ρ
]
max
=
δ
∆
ρ
=
ρ
0
−
ρ
ρ
0
ρ
−
1
=
∆
ρ
ρ
=
δ
=
1
+
k
−
1
2
M
2
!
1
k
−
1
−
1
.
M
=
v
/c
v
max
δ
v
max
≈
c
√
2
δ
δ
∼
10
−
2
δ
v
6
v
max
c
2
k
−
1
+
v
2
2
=
h
0
=
const
.
v
=
c
=
v
v
2
k
−
1
+
v
2
2
=
h
0
=
k
R
T
0
k
−
1
,
v
=
v
u
u
t
2
k
R
T
0
k
+
1
.
M
=
v
c
=
1
M
=
1
T
T
0
=
2
k
+
1
;
p
p
0
=
2
k
+
1
!
k
/
(
k
−
1)
;
ρ
ρ
0
=
2
k
+
1
!
1
/
(
k
−
1)
.
M
=
v
/c
λ
=
v
/v
λ
τ
=
T
T
0
=
1
+
k
−
1
2
M
2
!
−
1
=
1
−
k
−
1
k
+
1
λ
2
;
ε
=
ρ
ρ
0
=
1
+
k
−
1
2
M
2
!
−
1
k
−
1
=
=
1
−
k
−
1
k
+
1
λ
2
!
1
k
−
1
;
π
=
p
p
0
=
1
+
k
−
1
2
M
2
!
−
k
k
−
1
=
1
−
k
−
1
k
+
1
λ
2
!
k
k
−
1
.
τ
,
ε
,
π
k
M
=
v
/c
λ
=
v
/v
∗
λ
=
M
=
1
q
=
f
(
k
,
M
)
=
φ
(
k
,
λ
)
q
=
ρ
v
ρ
∗
v
∗
=
S
∗
S
.
q
q
=
S
∗
S
=
ε
λ
ε
∗
=
k
+
1
k
!
k
/k
−
1
λ
1
−
k
−
1
k
+
1
λ
2
!
1
/k
−
1
.
q
=
1
dx
dS
dG
dL
dQ
dL
G
=
ρ
v
S
dG
G
=
d
ρ
ρ
+
dv
v
+
dS
S
.
d
v
2
2
+
dp
ρ
+
dL
+
dψ
+
dL
+
dG
G
v
v
=
0
.
dQ
=
dh
+
d
v
2
2
+
dL
.
p
=
ρ
R
T
dp
p
=
d
ρ
ρ
+
dT
T
.
c
=
√
k
R
T
;
M
=
v
/c
(
M
2
−
1)
dv
v
=
dS
S
−
dG
G
−
1
c
2
dL
−
k
−
1
c
2
dQ
−
k
c
2
dL
.
M
=
1
dv
>
0
M
<
1
dS
<
0
dG
>
0
dL
>
0
dL
dQ
>
0
dS
>
0;
dG
<
0
dL
<
0;
dL
;
dQ
<
0
dL
>
0
dL
=
0
dG
=
0
dL
=
0;
dQ
=
0
(
M
2
−
1)
dv
v
=
dS
S
.
dv
>
0
M
<
1
dS
<
0
M
=
1
dS
>
0
ρ
G
=
ρ
v
S
=
ρ
∼
S
ρ
ρ
∼
1
/v
r
=
r
(
x
)
r
=
r
2
v
u
u
u
t
1
−
1
−
r
2
r
1
!
2
1
−
x
2
/l
2
2
(1
+
3
x
2
/l
2
)
3
,
r
,
x
r
1
,
r
2
l
4
r
1
v
/v
=
0
.
9
−
0
.
95
v
=
q
2
(
h
0
−
h
)
=
v
u
u
t
2
C
p
T
0
1
−
T
T
0
!
v
=
0
p
p/p
0
=
ε
T
T
0
=
p
p
0
!
(
k
−
1)
/k
=
ε
(
k
−
1)
/k
,
ρ
ρ
0
=
p
p
0
!
1
/k
=
ε
1
/k
.
G
=
ρ
v
S
ρ
=
ρ
0
(
ρ
/
ρ
0
)
G
=
ρ
0
S
ε
1
/k
r
2
C
p
T
0
1
−
ε
(
k
−
1)
/k
=
B
f
(
ε
)
.
B
=
ρ
0
S
q
2
C
p
T
0
=
f
(
ε
)
=
ε
1
/k
q
(1
−
ε
(
k
−
1)
/k
)
.
G
ε
=
2
k
+
1
!
k
/
(
k
−
1)
=
ε
.
ε
>
ε
v
6
v
G
6
G
ε
f
(
ε
)
ε
<
ε
v
=
v
G
=
G
.
‹
1
2
...
16
17
18
19
20
21
22
23
24
›