x
n+1
x
n+1
→ min
x∈
e
X
,
e
X = {x = (x
1
, ..., x
n
, x
n+1
) ∈ E
n+1
| ϕ
j
(x
1
, ..., x
n
) ≤ 0 (j = 1, m), f(x
1
, ..., x
n
) − x
n+1
≤ 0}.
f(x
1
, ..., x
n
)
f(x) =< c, x >→ min
x∈X
, (1)
X = {x = (x
1
, ..., x
n
) ∈ E
n
| ϕ
j
(x) ≤ 0 (j = 1, m)}, (2)
c ϕ
j
(x) (j = 1, m)}
x ∈ X I(x) = {j ∈ {1, ..., m}| ϕ
j
(x) = 0 }
J(x, δ) = {j ∈ {1, ..., m}| − δ < ϕ
j
(x) ≤ 0 },
δ
δ
0
> 0 x
0
∈ X k
δ
k
> 0 x
k
∈ X (k ≥ 0)
σ → min
σ,p
, (3)
< c, p >≤ σ, (4)
< ϕ
0
j
(x
k
), p >≤ σ (j ∈ J(x
k
, δ
k
)), (5)
|p
i
| ≤ 1 (i = 1, n), (6)
p
(σ
k
, p
k
)
σ
k
≤ 0
σ → min
σ,p
,
< c, p >≤ σ,
< ϕ
0
j
(x
k
), p >≤ σ (j ∈ I(x
k
)), (7)
|p
i
| ≤ 1 (i = 1, n).