f(x) X
x, y ∈ X α ∈ (0, 1)
f(αx + (1 −α)y) ≤ max(f(x), f (y)) x 6= y
f(x)
X = {x ∈ E
n
| Ax ≥ a, Bx = b} A
B m × n l × n a ∈ E
m
, b ∈ E
l
x, y ∈ X z = αx + (1 − α)y
α ∈ [0, 1] Az = αAx + (1 − α)Ay ≥ αa + (1 − α)a = a Bz = αBx + (1 − α)By =
αb + (1 − α)b = b z X X
f
j
(x) (j = 1, m) E
n
X =
{x |f
j
(x) ≤ 0 (i = 1, m)}
f
j
(x) (j = 1, m) X
f(x) = a
1
f
1
(x) + . . . + a
m
f
m
(x) X a
j
≥ 0 (j = 1, m)
f
i
(x) (i ∈ I) X
f(x) = sup
i∈I
f
i
(x) X
B n ×n p ∈ E
n
f(x) = hBx, xi + hp, xi B
f(t) [a, b] a = −∞ b =
+∞ g(x) X ⊂ E
n
g(x) ∈ [a, b]
x ∈ X h(x) = f(g(x)) X
f(x) X
g(x) = (f(x))
p
p ≥ 1
f(x) x
1
∈ E
n
hf
0
(x
1
), x − x
1
i ≥ 0 x ∈ E
n
x
1
f(x)
f(x)
X
X
f(x)
X λ Z = {x ∈ X | f(x) ≤ λ}
f
j
(x) (j = 1, m) Z = {x ∈
X | f
j
(x) ≤ 0 (j = 1, m)}
f(x) X
Z(x) = {y ∈ X | f(y) ≤ f(x)} x ∈ X
f(x) X x
∗
∈ X
x
∗
f(x) X
f(x) g(x)
X x ∈ X f(x) ≥
g(x) h(x) f(x) ≥ h(x) ≥ g(x)
x ∈ X
a X
X = {(x, y) ∈ E
2
| a(x − y
2
) = 0, x + y = 1}