1, x
1
− x
2
= 1 − x
1
− x
2
= 1 f(x)
x
1
+ x
2
= 1
e
f(x
1
) = f (x
1
, 1 − x
1
) = 3x
2
1
− 3x
1
+ 1
e
f
0
(x
1
) = 6x
1
−3 x
1
= 1/2 x
2
= 1/2
(1/2, 1/2)
>
f(x
1
, 1 + x
1
) = x
2
1
+ x
1
+ 1
(−1/2, 1/2)
>
f(x)
(−1/2, −1/2)
>
(1/2, −1/2)
>
X
(0, 1)
>
, (0, −1)
>
, (1, 0)
>
(−1, 0)
>
X
f(0, 0) = 0, f(1/2, 1/2) =
f(−1/2, −1/2) = 1/4, f(−1/2, 1/2) = f(1/2, −1/2) = 3/4, f(1, 0) = f(−1, 0) = f(0, 1) =
f(0, −1) = 1. f
X
f(x) = x
1
x
2
2
+ x
2
1
x
2
−
3x
2
1
− 3x
2
2
X = {x | − x
1
− x
2
+ 1 ≤ 0, x
1
+ x
2
− 16 ≤ 0}
X
1 ≤ x
1
+x
2
≤ 16 X
f(x)
½
f
0
x
1
= x
2
2
+ 2x
1
x
2
− 6x
1
= 0,
f
0
x
2
= 2x
1
x
2
+ x
2
1
− 6x
2
= 0.
(14)
(x
2
−x
1
)(x
1
+ x
2
+ 6) = 0 x
1
=
x
2
x
1
+ x
2
= −6
X x
1
= x
2
3x
2
1
−6x
1
= 0
x
1
= x
2
= 0 x
1
= x
2
= 2
X
F (x, y) = f(x) + y(x
1
+ x
2
− t) t = 1 t = 16
½
F
0
x
1
= x
2
2
+ 2x
1
x
2
− 6x
1
+ y = 0,
F
0
x
2
= 2x
1
x
2
+ x
2
1
− 6x
2
+ y = 0.
x
1
= x
2
t = 1
t = 16 (1/2, 1/2) (8, 8)
x
1
+ x
2
= 1 x
1
+ x
2
= 16 X
f(2, 2) =
−8, f(1/2, 1/2) = −5/4, f(8, 8) = 640.
X f(x)
x
1
= t, x
2
= s −t, t ∈ E
1
1 ≤ s ≤ 16
X f(t, s −t) = −(s + 6)t
2
+ (s
2
+
6s)t − 3s
2
−(s + 6) < 0 1 ≤ s ≤ 16 f(t, s − t) → −∞ t → ∞
X
f(x) = x
1
x
2
x
3
X = {x ∈ E
3
| x
1
+ x
2
+ x
3
≤ 6, x
1
x
2
+ x
2
x
3
+ x
1
x
3
≤ 8}
X