α = (z
0
, z
1
, . . . , z
n
)
α Â 0 z
p
> 0 p = min{i |
z
i
6= 0}
α
0
, α
00
∈ E
n+1
α
0
α
00
α
0
 α
00
α
0
− α
00
 0
E
n+1
{α
i
}
{α
i
}
α
i
= (z
i0
,
z
i1
, . . . , z
in
), i = 1, m
0
0
)
3
0
) {i | z
is
> 0, i ≥ 1} 6= ∅ r
1
z
rs
α
r
= min
n
1
z
is
α
i
| z
is
> 0, i ≥ 1
o
,
α
0
= (z
00
, z
01
, . . . , z
0n
)
B
0
= (A
1
, A
2
, A
7
)
x
1
x
2
x
3
x
4
x
5
x
6
x
7
−w 0 0 0 −1 1 −1 1 0
x
1
0 1 0 1 −2 −3 4 0
x
2
0 0 1 4 −3 −2 1 0
x
7
1 0 0 1 1 1 1 1
s = 3 α
1
= (0, 1, 0, 1, −2, −3, 4, 0) α
2
= (0, 0, 1, 4, −3, −2, 1, 0)
α
3
= (1, 0, 0, 1, 1, 1, 1, 1)
α
3
−α
1
= (1, −1, ...) Â 0 α
3
−α
2
/z
23
= (1, 0, ...) Â 0 α
3
 α
1
α
3
 1/z
23
α
2
α
1
(1/z
23
)α
2
α
1
−
1
4
α
2
= (0, 1, . . . ) Â 0.
min{α
i
/z
i3
| z
i3
> 0} = (1/z
23
)α
2
r = 2