
B
−1
b ≥ 0 m + (n −m) = n
X x = (B
−1
b, 0)
x
k
= 0 n − m x
x
s
= 0 s ∈ J \ {1, . . . , m} x
s
x
s
≥ 0
s
x
s
z
0s
< 0
x
s
w(x)
r(r ∈ {1, . . . , m})
(∗) x
s
= 0 x
r
= 0
x
s
x
r
x
r
z
r0
= 0 B
x
s
x
r
x
r
= 0 z
r0
/z
rs
x
1
, x
2
x
3
x = (x
1
, x
2
, x
3
)
>
x
4
, x
5
x
6
a
i
x = b
i
(i = 1, m),
x ∈ E
n
. i = 1, 2, 3, m = n = 3
(1, 1, 0)
>
(0, 1/2, 3/2)
>
X
x
n+i
= 0 (1 ≤ i ≤ m) a
i
x = b
i
x
1
= 0, x
2
= 0, x
3
= 0
X
x
4
= 2, x
5
= 1, x
6
= 3
(x
j
≥ 0 (j = 4, 5, 6))
X