Z
E
n
n
x =
x
1
x
2
. . .
x
n
E
n
x
>
= (x
1
, x
2
, . . . , x
n
) >
{x ∈ X| Q} X Q X = E
n
{x | Q}
[x, y] = {z | z = αx + (1 − α)y, 0 ≤ α ≤ 1} x y
(x, y) = [x, y] \ {x, y} = {z | z = αx + (1 − α)y, 0 < α < 1}
(x, y] [x, y)
hx, yi = x
>
y =
P
n
i=1
x
i
y
i
x y
kxk =
p
hx, xi x
ρ(x, y) = kx − yk x y
U
ε
(x) = {y | ρ(x, y) ≤ ε} ε x ε
x
X ⊂ E
n
x ∈ E
n
x X
ε > 0 X ∩ U
ε
(x) X
X X x
X ε
X x X ε > 0,
U
ε
(x) ⊂ X X
X X x ∈ X
X
X X = X \ X
X
x X
x
1
, x
2
∈ X, x
1
6= x
2
x = (x
1
+ x
2
)/2
x y E
n
x ≥ y E
n
x
i
≥ y
i
, (i = 1, n)
”i = 1, n” i ∈ {1, . . . , n}
x > y x
i
> y
i
, (i = 1, n)
x 6= y x
i
6= y
i
i
f
0
(x) f(x) x
(f
0
(x))
>
= (
∂f (x)
∂x
1
,
∂f (x)
∂x
2
, . . . ,
∂f (x)
∂x
n
).
X
X ⊂ X
f : X −→ E
1