55
3. ɋɦɟɲɚɧɧɚɹ ɡɚɞɚɱɚ ɞɥɹ ɧɟɨɞɧɨɪɨɞɧɨɝɨ ɭɪɚɜɧɟɧɢɹ ɤɨɥɟɛɚɧɢɣ
ɫɬɪɭɧɵ ɫ ɧɟɨɞɧɨɪɨɞɧɵɦɢ ɝɪɚɧɢɱɧɵɦɢ ɭɫɥɨɜɢɹɦɢ. ɍɤɚɡɚɧɧɚɹ ɡɚɞɚɱɚ
ɮɨɪɦɭɥɢɪɭɟɬɫɹ ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ:
Ɍɪɟɛɭɟɬɫɹ ɧɚɣɬɢ ɮɭɧɤɰɢɸ
tx,(uu
, ɭɞɨɜɥɟɬɜɨɪɹɸɳɭɸ ɧɟɨɞɧɨ-
ɪɨɞɧɨɦɭ ɭɪɚɜɧɟɧɢɸ ɤɨɥɟɛɚɧɢɣ ɫɬɪɭɧɵ
)tx,(fuau
xx
t
t
2
, l
0 , 0
t , (8.48)
ɧɚɱɚɥɶɧɵɦ ɭɫɥɨɜɢɹɦ
x(
x,(u
0
,
lx
0
, (8.49)
)x()x,(u
t
0
, l
0 (8.50)
ɢ ɝɪɚɧɢɱɧɵɦ ɭɫɥɨɜɢɹɦ
)t()t,(u)t,(u
x 111
00
, 0
t , (8.51)
)t()tl,(u)tl,(u
x 222
, 0
t . (8.52)
Ɂɞɟɫɶ
tx,(
,
(
,
(
, )t(
1
)t(
2
– ɡɚɞɚɧɧɵɟ ɮɭɧɤɰɢɢ, ɚɤɨ-
ɷɮɮɢɰɢɟɧɬɵ
2
a ,
1
,
1
,
2
,
2
ɭɞɨɜɥɟɬɜɨɪɹɸɬ ɬɟɦ ɠɟ ɭɫɥɨɜɢɹɦ, ɱɬɨ ɢ ɜ
ɡɚɞɚɱɟ (8.1) – (8.5).
Ȼɭɞɟɦ ɢɫɤɚɬɶ ɪɟɲɟɧɢɟ ɡɚɞɚɱɢ (8.48) – (8.52) ɜ ɜɢɞɟ
x,(w
x,(
x,(u
,
ɝɞɟ
tx,(v – ɧɨɜɚɹ ɧɟɢɡɜɟɫɬɧɚɹ ɮɭɧɤɰɢɹ, ɚ
tx,(w – ɩɪɨɢɡɜɨɥɶɧɚɹ ɮɭɧɤ-
ɰɢɹ, ɞɜɚɠɞɵ ɞɢɮɮɟɪɟɧɰɢɪɭɟɦɚɹ ɩɨ
x
ɢɩɨt ɢ ɭɞɨɜɥɟɬɜɨɪɹɸɳɚɹ ɝɪɚɧɢɱ-
ɧɵɦ ɭɫɥɨɜɢɹɦ
)t()t,(w)t,(w
x 111
00
, 0
t , (8.53)
)t()tl,(w)tl,(w
x 222
, 0
t . (8.54)
ɇɚɯɨɠɞɟɧɢɟ ɮɭɧɤɰɢɢ
x,(w
ɪɚɫɫɦɨɬɪɟɧɨ ɜ §7, ɩ. 3. ȼ ɞɚɥɶɧɟɣɲɟɦ
ɛɭɞɟɦ ɩɪɟɞɩɨɥɚɝɚɬɶ, ɱɬɨ ɞɚɧɧɚɹ ɮɭɧɤɰɢɹ ɢɡɜɟɫɬɧɚ.
ɉɨɞɫɬɚɜɥɹɹ ɮɭɧɤɰɢɸ
w
u
ɜ (8.48) – (8.52) ɢ ɭɱɢɬɵɜɚɹ ɪɚɜɟɧɫɬɜɚ
(8.53), (8.54), ɩɨɥɭɱɢɦ ɡɚɞɚɱɭ ɨɬɧɨɫɢɬɟɥɶɧɨ ɧɨɜɨɣ ɧɟɢɡɜɟɫɬɧɨɣ ɮɭɧɤɰɢɢ
tx,(v :
)tx,(fvav
xxtt
~
2
,
lx
0
, 0
t , (8.55)
x(
x,(
~
0
,
lx
0
, (8.56)
)x()x,(v
t
~
0
, l
0 , (8.57)
000
11
)t,(v)t,(v
x
, 0
t , (8.58)