48
Ⱦɥɹ ɪɟɲɟɧɢɹ ɡɚɞɚɱɢ (8.1) – (8.5) ɪɚɫɫɦɨɬɪɢɦ ɫɥɟɞɭɸɳɭɸ ɜɫɩɨɦɨɝɚ-
ɬɟɥɶɧɭɸ ɡɚɞɚɱɭ:
ɇɚɣɬɢ ɧɟɬɪɢɜɢɚɥɶɧɵɟ ɪɟɲɟɧɢɹ ɭɪɚɜɧɟɧɢɹ
xxtt
UaU
2
, l
0 , 0
t , (8.6)
ɭɞɨɜɥɟɬɜɨɪɹɸɳɢɟ ɝɪɚɧɢɱɧɵɦ ɭɫɥɨɜɢɹɦ
000
11
)t,(U)t,(U
x
, 0
t , (8.7)
0
22
)tl,(U)tl,(U
x
,
0
(8.8)
ɢ ɩɪɟɞɫɬɚɜɢɦɵɟ ɜ ɜɢɞɟ
(
x(
x,U(
(8.9)
ɝɞɟ
(
– ɮɭɧɤɰɢɹ, ɧɟ ɡɚɜɢɫɹɳɚɹ ɨɬ ɩɟɪɟɦɟɧɧɨɣ t ,
t(
– ɮɭɧɤɰɢɹ, ɧɟ
ɡɚɜɢɫɹɳɚɹ ɨɬ ɩɟɪɟɦɟɧɧɨɣ x .
ɉɨɞɫɬɚɜɥɹɹ (8.9) ɜ (8.6), ɬɚɤ ɠɟ, ɤɚɤ ɢ ɜ §7, ɩɨɥɭɱɢɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶ-
ɧɵɟ ɭɪɚɜɧɟɧɢɹ ɨɬɧɨɫɢɬɟɥɶɧɨ ɮɭɧɤɰɢɣ
t(
ɢ
(
:
0
2
)t(Ta)t(T
, (8.10)
0
x(
x(
. (8.11)
ɉɨɞɫɬɚɜɥɹɹ (8.9) ɜ (8.7) ɢɜ (8.8), ɩɨɥɭɱɢɦ, ɱɬɨ ɮɭɧɤɰɢɹ
x(
ɞɨɥɠɧɚ
ɭɞɨɜɥɟɬɜɨɪɹɬɶ ɝɪɚɧɢɱɧɵɦ ɭɫɥɨɜɢɹɦ
000
11
)(X)(X
, (8.12)
0
22
)l(X)l(X
. (8.13)
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɦɵ ɩɪɢɯɨɞɢɦ ɤ ɫɥɟɞɭɸɳɟɣ ɡɚɞɚɱɟ:
Ɍɪɟɛɭɟɬɫɹ ɧɚɣɬɢ ɜɫɟ ɡɧɚɱɟɧɢɹ ɱɢɫɥɨɜɨɝɨ ɩɚɪɚɦɟɬɪɚ
, ɩɪɢ ɤɨɬɨɪɵɯ
ɫɭɳɟɫɬɜɭɸɬ ɧɟɬɪɢɜɢɚɥɶɧɵɟ ɪɟɲɟɧɢɹ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɝɨ ɭɪɚɜɧɟɧɢɹ
(8.11), ɭɞɨɜɥɟɬɜɨɪɹɸɳɢɟ ɝɪɚɧɢɱɧɵɦ ɭɫɥɨɜɢɹɦ (8.12), (8.13), ɢ ɧɚɣɬɢ ɷɬɢ
ɪɟɲɟɧɢɹ. ɂɧɵɦɢ ɫɥɨɜɚɦɢ, ɦɵ ɩɪɢɯɨɞɢɦ ɤ ɪɚɫɫɦɨɬɪɟɧɧɨɣ ɜɵɲɟ ɡɚɞɚɱɟ
ɒɬɭɪɦɚ-Ʌɢɭɜɢɥɥɹ ɨ ɧɚɯɨɠɞɟɧɢɢ ɫɨɛɫɬɜɟɧɧɵɯ ɡɧɚɱɟɧɢɣ ɢ ɫɨɛɫɬɜɟɧɧɵɯ
ɮɭɧɤɰɢɣ.
Ɍɚɤ ɠɟ, ɤɚɤ ɢ ɜ §7, ɛɭɞɟɦ ɩɪɟɞɩɨɥɚɝɚɬɶ, ɱɬɨ ɝɪɚɧɢɱɧɵɟ ɭɫɥɨɜɢɹ (8.12),
(8.13) ɨɬɧɨɫɹɬɫɹ ɤ ɨɞɧɨɦɭ ɢɡ ɬɢɩɨɜ I – IV (ɫɦ. §6). Ɍɨɝɞɚ, ɤɚɤ
ɢɡɜɟɫɬɧɨ, ɫɭ-
ɳɟɫɬɜɭɟɬ ɫɱɟɬɧɨɟ ɦɧɨɠɟɫɬɜɨ ɫɨɛɫɬɜɟɧɧɵɯ ɡɧɚɱɟɧɢɣ
0
n
, !,, 21
n , ɢ
ɫɨɨɬɜɟɬɫɬɜɭɸɳɚɹ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨɫɬɶ ɫɨɛɫɬɜɟɧɧɵɯ ɮɭɧɤɰɢɣ
)x(X
n
(ɫɦ.
ɉɪɢɥɨɠɟɧɢɟ).
ɉɭɫɬɶ
)t(T
n
– ɪɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ (7.11) ɩɪɢ
n
:
0
2
)t(Ta)t(T
nnn
, !,, 21
n . (8.14)