38
0
22
)l(X)l(X
. (7.14)
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɦɵ ɩɪɢɯɨɞɢɦ ɤ ɫɥɟɞɭɸɳɟɣ ɡɚɞɚɱɟ:
Ɍɪɟɛɭɟɬɫɹ ɧɚɣɬɢ ɜɫɟ ɡɧɚɱɟɧɢɹ ɱɢɫɥɨɜɨɝɨ ɩɚɪɚɦɟɬɪɚ
, ɩɪɢ ɤɨɬɨɪɵɯ
ɫɭɳɟɫɬɜɭɸɬ ɧɟɬɪɢɜɢɚɥɶɧɵɟ ɪɟɲɟɧɢɹ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɝɨ ɭɪɚɜɧɟɧɢɹ
(7.12), ɭɞɨɜɥɟɬɜɨɪɹɸɳɢɟ ɝɪɚɧɢɱɧɵɦ ɭɫɥɨɜɢɹɦ (7.13), (7.14), ɢ ɧɚɣɬɢ ɷɬɢ
ɪɟɲɟɧɢɹ. ɂɧɵɦɢ ɫɥɨɜɚɦɢ, ɦɵ ɩɪɢɯɨɞɢɦ ɤ ɪɚɫɫɦɨɬɪɟɧɧɨɣ ɜɵɲɟ ɡɚɞɚɱɟ
ɒɬɭɪɦɚ-Ʌɢɭɜɢɥɥɹ ɨ ɧɚɯɨɠɞɟɧɢɢ ɫɨɛɫɬɜɟɧɧɵɯ ɡɧɚɱɟɧɢɣ ɢ ɫɨɛɫɬɜɟɧɧɵɯ
ɮɭɧɤɰɢɣ.
ȼ ɞɚɥɶɧɟɣɲɟɦ ɛɭɞɟɦ ɩɪɟɞɩɨɥɚɝɚɬɶ, ɱɬɨ ɝɪɚɧɢɱɧɵɟ ɭɫɥɨɜɢɹ (7.13),
(7.14) ɨɬɧɨɫɹɬɫɹ ɤ ɨɞɧɨɦɭ ɢɡ ɬɢɩɨɜ I – IV (ɫɦ. §6). Ɍɨɝɞɚ, ɤɚɤ ɩɨɤɚɡɚɧɨ ɜɵ-
ɲɟ,
ɫɭɳɟɫɬɜɭɟɬ ɫɱɟɬɧɨɟ ɦɧɨɠɟɫɬɜɨ ɫɨɛɫɬɜɟɧɧɵɯ ɡɧɚɱɟɧɢɣ
0
n
,
!,, 21
n
, ɢ ɫɨɨɬɜɟɬɫɬɜɭɸɳɚɹ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨɫɬɶ ɫɨɛɫɬɜɟɧɧɵɯ ɮɭɧɤɰɢɣ
)x(X
n
(ɫɦ. ɉɪɢɥɨɠɟɧɢɟ).
ɉɭɫɬɶ
)t(T
n
– ɪɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ (7.11) ɩɪɢ
n
:
0
2
)t(Ta)t(T
nnn
, !,, 21
n . (7.15)
Ɉɛɳɟɟ ɪɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ (7.15) ɢɦɟɟɬ ɜɢɞ
)tȜa(A)t(T
nnn
2
exp
, (7.16)
ɝɞɟ
n
A – ɩɪɨɢɡɜɨɥɶɧɵɟ ɩɨɫɬɨɹɧɧɵɟ (ɜ ɞɚɥɶɧɟɣɲɟɦ ɦɵ ɫɱɢɬɚɟɦ ɢɯ ɨɬɥɢɱ-
ɧɵɦɢ ɨɬ ɧɭɥɹ, ɬɚɤ ɤɚɤ ɧɚɫ ɢɧɬɟɪɟɫɭɸɬ ɬɨɥɶɤɨ ɧɟɬɪɢɜɢɚɥɶɧɵɟ ɪɟɲɟɧɢɹ).
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɪɟɲɟɧɢɹɦɢ ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɣ ɜɫɩɨɦɨɝɚɬɟɥɶɧɨɣ ɡɚɞɚɱɢ
(7.5) – (7.8) ɹɜɥɹɸɬɫɹ ɮɭɧɤɰɢɢ
)x(X)tȜa(A)t(T)x(X)tx,(U
nnnnnn
2
exp ,
!,, 21
n .
Ȼɭɞɟɦ ɢɫɤɚɬɶ ɪɟɲɟɧɢɟ ɢɫɯɨɞɧɨɣ ɡɚɞɚɱɢ ɜ ɜɢɞɟ ɪɹɞɚ, ɱɥɟɧɚɦɢ ɤɨɬɨɪɨɝɨ
ɹɜɥɹɸɬɫɹ ɮɭɧɤɰɢɢ
)tx,(U
n
:
1
2
1 n
nnn
n
n
)x(X)tȜa(A)tx,(U)tx,(u exp
. (7.17)
ȿɫɥɢ ɪɹɞ (7.17) ɫɯɨɞɢɬɫɹ ɢ ɟɝɨ ɦɨɠɧɨ ɩɨɱɥɟɧɧɨ ɞɢɮɮɟɪɟɧɰɢɪɨɜɚɬɶ
ɞɜɚɠɞɵ ɩɨ
ɢɨɞɢɧɪɚɡɩɨ t , ɬɨ ɥɟɝɤɨ ɜɢɞɟɬɶ, ɱɬɨ ɟɝɨ ɫɭɦɦɚ
tx,(u
ɭɞɨɜɥɟɬɜɨɪɹɟɬ ɭɪɚɜɧɟɧɢɸ (7.1) ɢ ɝɪɚɧɢɱɧɵɦ ɭɫɥɨɜɢɹɦ (7.3), (7.4). Ⱦɟɣɫɬ-
ɜɢɬɟɥɶɧɨ, ɢɡ ɩɨɫɬɪɨɟɧɢɹ ɮɭɧɤɰɢɣ
)tx,(U
n
ɫɥɟɞɭɟɬ, ɱɬɨ
0
1
2
n
nxxtnxxt
)tx,(U)tx,(U)tx,(ua)tx,(u
,