30
ɫɬɟɪɠɧɟ, ɢ ɡɚɞɚɱ, ɨɩɢɫɵɜɚɸɳɢɯ ɩɪɨɰɟɫɫɵ ɦɚɥɵɯ ɩɨɩɟɪɟɱɧɵɯ ɤɨɥɟɛɚɧɢɣ
ɫɬɪɭɧɵ ɢ ɩɪɨɞɨɥɶɧɵɯ ɤɨɥɟɛɚɧɢɣ ɫɬɟɪɠɧɹ (ɫɦ. §§3, 4).
Ʌɟɝɤɨ ɜɢɞɟɬɶ, ɱɬɨ ɜ ɫɥɭɱɚɟ ɝɪɚɧɢɱɧɵɯ ɭɫɥɨɜɢɣ ɜɢɞɚ I – IV ɧɟɪɚɜɟɧɫɬɜɨ
(6.14) ɜɵɩɨɥɧɟɧɨ (ɩɪɨɜɟɪɢɬɶ ɷɬɨ ɫɚɦɨɫɬɨɹɬɟɥɶɧɨ). ɉɨɷɬɨɦɭ, ɜ ɫɢɥɭ ɫɥɟɞɫɬ-
ɜɢɹ ɢɡ ɩɪɢɜɟɞɟɧɧɨɣ ɜɵɲɟ ɥɟɦɦɵ, ɥɸɛɨɟ ɫɨɛɫɬɜɟɧɧɨɟ ɡɧɚɱɟɧɢɟ ɡɚɞɚɱɢ
ɒɬɭɪɦɚ-Ʌɢɭɜɢɥɥɹ ɫ ɭɤɚɡɚɧɧɵɦɢ ɝɪɚɧɢɱɧɵɦɢ ɭɫɥɨɜɢɹɦɢ ɧɟɨɬɪɢɰɚɬɟɥɶɧɨ.
Ⱦɚɥɟɟ, ɢɡ (6.13) ɢ
(6.14) ɫɥɟɞɭɟɬ, ɱɬɨ ɫɨɛɫɬɜɟɧɧɨɟ ɡɧɚɱɟɧɢɟ
ɪɚɜɧɨ ɧɭɥɸ
ɬɨɝɞɚ ɢ ɬɨɥɶɤɨ ɬɨɝɞɚ, ɤɨɝɞɚ
000
(
(
l(
l(
(6.15)
ɢ
0
0
2
l
xd)x(X . (6.16)
ɂɡ (6.16) ɜɵɬɟɤɚɟɬ, ɱɬɨ ɫɨɛɫɬɜɟɧɧɚɹ ɮɭɧɤɰɢɹ
(
, ɨɬɜɟɱɚɸɳɚɹ ɫɨɛ-
ɫɬɜɟɧɧɨɦɭ ɡɧɚɱɟɧɢɸ
0
, ɹɜɥɹɟɬɫɹ ɩɨɫɬɨɹɧɧɨɣ: 0
cons
(
; ɩɪɢ
ɷɬɨɦ ɭɫɥɨɜɢɟ (6.15) ɜɵɩɨɥɧɹɟɬɫɹ ɚɜɬɨɦɚɬɢɱɟɫɤɢ. Ɂɚɦɟɬɢɦ, ɧɚɤɨɧɟɰ, ɱɬɨ
ɫɪɟɞɢ ɭɫɥɨɜɢɣ I – IV ɢɦɟɟɬɫɹ ɬɨɥɶɤɨ ɨɞɢɧ ɬɢɩ ɝɪɚɧɢɱɧɵɯ ɭɫɥɨɜɢɣ, ɤɨɬɨ-
ɪɵɦ ɭɞɨɜɥɟɬɜɨɪɹɟɬ ɮɭɧɤɰɢɹ
0
cons
(
, ɚ ɢɦɟɧɧɨ
00
(
, 0
l(
(6.17)
(ɱɚɫɬɧɵɣ ɫɥɭɱɚɣ ɭɫɥɨɜɢɣ IV ɩɪɢ
0
21
hh ).
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɫɩɪɚɜɟɞɥɢɜɨ ɫɥɟɞɭɸɳɟɟ ɫɜɨɣɫɬɜɨ ɫɨɛɫɬɜɟɧɧɵɯ ɡɧɚɱɟ-
ɧɢɣ ɢ ɫɨɛɫɬɜɟɧɧɵɯ ɮɭɧɤɰɢɣ.
6.
ȿɫɥɢ ɝɪɚɧɢɱɧɵɟ ɭɫɥɨɜɢɹ ɜ ɡɚɞɚɱɟ ɒɬɭɪɦɚ-Ʌɢɭɜɢɥɥɹ ɨɬɧɨɫɹɬɫɹ ɤ
ɨɞɧɨɦɭ ɢɡ ɬɢɩɨɜ I – IV, ɬɨ ɜɫɟ ɫɨɛɫɬɜɟɧɧɵɟ ɡɧɚɱɟɧɢɹ ɧɟɨɬɪɢɰɚɬɟɥɶɧɵ.
ɇɚɢɦɟɧɶɲɟɟ ɫɨɛɫɬɜɟɧɧɨɟ ɡɧɚɱɟɧɢɟ ɪɚɜɧɨ ɧɭɥɸ ɬɨɝɞɚ ɢ ɬɨɥɶɤɨ ɬɨɝɞɚ, ɤɨ-
ɝɞɚ ɝɪɚɧɢɱɧɵɟ ɭɫɥɨɜɢɹ ɢɦɟɸɬ ɜɢɞ (6.17). ɇɭɥɟɜɨɦɭ ɫɨɛɫɬɜɟɧɧɨɦɭ ɡɧɚɱɟɧɢɸ
ɨɬɜɟɱɚɟɬ ɫɨɛɫɬɜɟɧɧɚɹ ɮɭɧɤɰɢɹ
0
const
x(
.
ɋɥɟɞɫɬɜɢɟ.
ȼ ɫɥɭɱɚɟ ɝɪɚɧɢɱɧɵɯ ɭɫɥɨɜɢɣ ɜɢɞɚ I – IV, ɨɬɥɢɱɧɵɯ ɨɬ
ɭɫɥɨɜɢɣ (6.17), ɜɫɟ ɫɨɛɫɬɜɟɧɧɵɟ ɡɧɚɱɟɧɢɹ ɩɨɥɨɠɢɬɟɥɶɧɵ.
ɇɚɣɞɟɦ ɬɟɩɟɪɶ ɫɨɛɫɬɜɟɧɧɵɟ ɡɧɚɱɟɧɢɹ ɢ ɫɨɛɫɬɜɟɧɧɵɟ ɮɭɧɤɰɢɢ ɡɚɞɚɱɢ
(6.1) – (6.3) ɫ ɝɪɚɧɢɱɧɵɦɢ ɭɫɥɨɜɢɹɦɢ ɜɢɞɚ I – IV. ɉɪɢ ɷɬɨɦ ɦɵ ɛɭɞɟɦ ɪɚɡ-
ɥɢɱɚɬɶ ɫɥɭɱɚɢ ɝɪɚɧɢɱɧɵɯ ɭɫɥɨɜɢɣ II – IV, ɤɨɝɞɚ ɩɨɫɬɨɹɧɧɵɟ
1
h ɢ (ɢɥɢ)
2
h
ɪɚɜɧɵ ɧɭɥɸ, ɢ ɤɨɝɞɚ ɨɧɢ ɩɨɥɨɠɢɬɟɥɶɧɵ. Ⱥ ɢɦɟɧɧɨ, ɪɚɫɫɦɨɬɪɢɦ ɫɥɟɞɭɸ-
ɳɢɟ 9 ɬɢɩɨɜ ɝɪɚɧɢɱɧɵɯ ɭɫɥɨɜɢɣ:
I.
00
(
, 0
l(
;
II . ɚ)
00
(
, 0
l(
( 0
1
h );