=
ω − x
2
− t
(ω − x
1
)(ω − x
2
)
+
ω − x
1
− t
(ω − x
1
)(ω − x
2
)
I
t
(0, min(ω − x
1
, ω − x
2
)).
T (x) = X − x
µ
x
(t) =
f
x
(t)
s
x
(t)
=
f(x + t)
s(x + t)
= µ
x+t
= −
d
d t
ln s(x + t) =
= −
d
d t
[ln s(x + t) − ln s(x)] = −
d
d t
ln
s(x + t)
s(x)
= −
d
d t
ln
t
p
x
,
µ
x
(t) = µ
x+t
= −
d
d t
ln
t
p
x
µ
x
1
:x
2
:...:x
m
(t) = −
d
d t
ln
t
p
x
1
:x
2
:...:x
m
= −
d
d t
m
X
i=1
ln
t
p
x
i
=
m
X
i=1
µ
x
i
(t)
µ
x
1
:x
2
:...:x
m
(t) =
m
X
i=1
µ
x
i
(t)
µ
x
i
(t) = µ
x
i
+t
= B e
α(x
i
+t)
= B r
x
i
+t
,
r = e
α
, t ≥ 0, i = 1, . . . , m.
r
x
1
+ r
x
2
+ ··· + r
x
m
= r
ω
,
ω,
ω =
1
α
ln {r
x
1
+ r
x
2
+ ··· + r
x
m
} =