= P(T (x) ≤ t + u) − P(T (x) ≤ t) =
t+u
q
x
−
t
q
x
,
t|u
q
x
= P(t < T (x) ≤ t + u) =
= P(T (x) > t) − P(T (x) > t + u) =
t
p
x
−
t+u
p
x
,
t|u
q
x
=
s(x + t) − s(x + t + u)
s(x)
.
u = 1
t|
q
x
=
t+1
q
x
−
t
q
x
=
t
p
x
−
t+1
p
x
=
s(x + t) − s(x + t + 1)
s(x)
.
x
◦
e
x
= ET (x);
ET (0) = EX =
◦
e
◦
,
◦
e
◦
◦
e
x
x > 0.
T (x)
◦
e
x
= ET (x) =
Z
∞
0
t dF
x
(t) =
Z
∞
0
t dP(T (x) ≤ t) =
=
Z
∞
0
P(T (x) > t) dt =
Z
∞
0
t
p
x
dt.
Z
∞
0
t
p
x
dt =
1
s(x)
Z
∞
0
s(x + t) dt =
1
s(x)
Z
∞
x
s(u) du,
◦
e
x
=
1
s(x)
Z
∞
x
s(u) du.