µ
x
=
f(x)
s(x)
=
q
n
p
n
+ (x − n)q
n
, n < x < n + 1.
80
1
2
81
1
2
s(x) = (n + 1 − x)s(n) + (x − n)s(n + 1), n ≤ x ≤ n + 1,
s
80
1
2
=
81 − 80
1
2
s(80) +
80
1
2
− 80
s(81) = 0, 5(s(80) + s(81)),
s
81
1
2
= 0, 5(s(81) + s(82)).
P
1
2
< T(80) < 1
1
2
=
s
80
1
2
− s
81
1
2
s(80)
=
= 0, 5
s(80) + s(81) − s(81) − s(82)
s(80)
=
= 0, 5
1 −
s(82)
s(80)
= 0, 5
1 −
s(82)
s(81)
˙
s(81)
s(80)
!
=
= 0, 5(1 − p
81
p
80
) = 0, 5(1 − (1 − q
81
)(1 − q
80
)) =
= 0, 5(1 − (1 − 0, 12548)(1 − 0, 11672)) =
= 0, 5(1 − 0, 87452
˙
0, 88328) = 0, 11378.
τ = {X} {X}
X X
X = K(0)+τ K(0) = [X]
τ
τ
n
P{τ ≤ t|K(0) = n} = P{X − K(0) ≤ t|K(0) = n} =