F (k) p(k) =
P(Y = k) = F (k) − F (k −1) = ∆F (k −1),
1) z(k)
2) Ez(K) =
∞
X
k=0
z(k)p(k) < ∞.
Ez(K) = z(0) +
∞
X
k=0
[1 − F (k)]∆z(k)
k−1
X
j=0
z(j)p(j) = −
k−1
X
j=0
z(j)∆[1 − F (j − 1)] =
= −z(j)[1 − F (j − 1)]|
k
0
+
k−1
X
j=0
[1 − F (j)]∆z(j).
lim
k→∞
z(k)[1−F(k−1)] = 0.
z(k)
lim
k→∞
z(k)[1 − F (k −1)] ≤ z(0) lim
k→∞
[1 − F (k −1)] = 0,
lim
k→∞
F (k −1) = 0.
z(k)
0 ≤ z(k)[1 − F (k −1)] = z(k)
∞
X
j=k
p(j) ≤
∞
X
j=k
z(j)p(j).
∞
X
k=0
z(k)p(k)
lim
k→∞
∞
X
j−k
z(j)p(j) = 0,
lim
k→∞
z(k)[1 − F (k −1)] = 0. ♠