E|ξ
n
− ξ| → 0
n → ∞.
d
n
(x
n
− φ) =⇒ N
s
{µ, σ},
H(z) ∈ N
1,s
(φ), H
(1)
(φ) 6= 0
d
n
(H(x
n
) − H(φ)) =⇒ N
1
s
X
j=1
H
j
(φ)µ
j
,
s
X
j,p=1
H
j
(φ)H
p
(φ)σ
jp
. ( )
{T
n
, n = 1, 2, . . .}
p
d
n
[T
n
− θ] =⇒ N
1
0, σ
2
(θ)
,
d
n
↑ ∞ g
g
0
g
0
(θ) 6= 0
p
d
n
[g (T
n
) − g(θ)] =⇒ N
1
n
0, [g
0
(θ)σ(θ)]
2
o
.
g
0
√
d
n
[g (T
n
) − g(θ)]
g
0
(T
n
)
=⇒ N
1
0, σ
2
(θ)
,
σ(θ)
√
d
n
[g (T
n
) − g(θ)]
g
0
(T
n
) σ (T
n
)
=⇒ N
1
{0, 1}.
d
n
= n
H(z) ∈ N
2,s
(φ),
M
m
kx
n
k = O
d
−m/2
n
m ≥ 3, m ∈ N,
δ = δ
n
= Cd
−1
n
H(φ) 6= 0 τ ∈ N
+
(τ, k) ∈ T (m)
E
h
e
Φ(x
n
, δ) − H(φ)
i
k
− E
∇H(φ)(x
n
− φ)
T
k
= O
d
−(k+1)/2
n
, ( )
e
Φ(x
n
, δ) = H(x
n
)/ (1 + δ |H(x
n
)|
τ
)
ρ
, τ > 0, ρ > 0, ρτ ≥ 1, δ > 0.