440 10 Heat and Matter
10.37 Let the specific heats of liquids A, B and C be, respectively, C
A
, C
B
and C
C
.
When A and B are mixed, equilibrium of the mixture requires that
MC
A
(16 − 12) = MC
B
(18 − 16)
or C
B
= 2C
A
When B and C are mixed
MC
B
(23 − 18) = MC
C
(28 − 23)
or C
C
= C
B
= 2C
A
When A and C are mixed, let the equilibrium temperature be T .
MC
A
(T − 12) = MC
C
(28 − T ) = M2C
C
(28 − T )
∴ T = 22.67
◦
C
10.38
(a) The block is fixed. The kinetic energy of the bullet is entirely converted
into heat energy. Let m be the mass and v the velocity of the bullet.
Q =
1
2
mv
2
=
1
2
(3 × 10
−3
)(120)
2
= 21.6J= 5.167 cal
Rise in temperature
T =
Q
mc
=
5.167
3 × 0.031
= 55.56
◦
C
(b) The block is free to move. In this case, after the collision some kinetic
energy will go into the block + bullet system.
1
2
mv
2
=
1
2
(M + m)v
2
1
+ Q (energy conservation) (1)
mv = (M + m)v
1
(momentum conservation) (2)
where M is the mass of the block and v
1
the final velocity of the block
+ bullet system. Eliminating v
1
and simplifying
Q =
1
2
mv
2
M
M + m
=
1
2
× 3 × 10
−3
× (120)
2
50
50 + 3
= 20.38 J = 4.875 cal
T =
Q
mc
=
4.875
3 × 0.031
= 52.42
◦
C
10.39 Potential energy available from m kg of water through a fall of h metres is
mgh J. 15/100 mgh. Mechanical energy is converted into heat.