752 CHAPTER 10 Analytic Geometry
EXERCISES 10.6
1. What are the polar coordinates of the points P, Q, R, S, T, U,
V in the figure?
In Exercises 2–6, plot the point whose polar coordinates are
given.
2. (1, p/4) 3. (2, 3p/4) 4. (2, 2p/3)
5. (3, 5p/3) 6. (3, p/6)
In Exercises 7–12, list four other pairs of polar coordinates for
the given point, each with a different combination of signs (that
is, r 0, u 0; r 0, u 0; r 0, u 0; r 0, u 0).
7. (3, p/3) 8. (5, p) 9. (2, 2p/3)
10. (1, p/6) 11. (3
, 3p/4) 12. (3, 7p/6)
In Exercises 13–20, convert the polar coordinates to rectangu-
lar coordinates.
13. (3, p/3) 14. (2, p/4) 15. (1, 5p/6)
16. (2, 0) 17. (1.5, 5) 18. (2.2, 2.2)
19. (4, p/7) 20. (1, 1)
In Exercises 21–34, convert the rectangular coordinates to
polar coordinates.
21. (33
, 3) 22. (23
, 2) 23. (1, 1)
24. (2
, 2
) 25. (3, 33
) 26. (2
, 6
)
27. (2, 4) 28. (3, 2) 29. (5, 2.5)
30. (6.2, 3) 31. (0, 2) 32. (.5, 3.5)
33. (2, 4) 34. (5
, 10)
In Exercises 35–40, find a polar equation that is equivalent to
the given rectangular equation.
35. x
2
y
2
25 36. 4xy 1 37. x 12
38. y 4 39. y 2x 1 40. y x 2
P
Q
R
π
7π
6
S
T
U
V
1357
Polar axis
π
3
−
π
4
π
2
2π
3
In Exercises 41–52, find a rectangular equation that is equiva-
lent to the given polar equation.
41. r 3[Hint: Square both sides, then substitute.]
42. r 5
43. u p/6 {Hint: Take the tangent of both sides, then substi-
tute.]
44. u p/4
45. r sec u [Hint: Express the right side in terms of cosine.]
46. r csc u 47. r
2
tan u 48. r
2
sin u
49. r 2 sin u 50. r 3 cos u
51. r
1
4
sin u
52. r
1
6
cos u
In Exercises 53–58, sketch the graph of the equation without
using a calculator.
53. r 4 54. r 1 55. u p/3
56. u 5p/6 57. u 1 58. u 4
In Exercises 59–82, sketch the graph of the equation.
59. r u (u 0) 60. r 3u (u 0)
61. r 1 sin u 62. r 3 3 cos u
63. r 2 cos u 64. r 6 sin u
65. r cos 2u 66. r cos 3u
67. r sin 3u 68. r sin 4u
69. r
2
4 cos 2u 70. r
2
sin 2u
71. r 2 4 cos u 72. r 1 2 cos u
73. r sin u cos u 74. r 4 cos u 4 sin u
75. r sin (u/2) 76. r 4 tan u
77. r sin u tan u (cissoid)
78. r 4 2 sec u (conchoid)
79. r e
u
(logarithmic spiral)
80. r
2
1/u 81. r 1/u (u 0) 82. r
2
u
83. (a) Find a complete graph of r 1 2 sin 3u.
(b) Predict what the graph of r 1 2 sin 4u will look
like. Then check your prediction with a calculator.
(c) Predict what the graph of r 1 2 sin 5u will look
like. Then check your prediction with a calculator.
84. (a) Find a complete graph of r 1 3 sin 2u.
(b) Predict what the graph of r 1 3 sin 3u will look
like. Then check your prediction with a calculator.
(c) Predict what the graph of r 1 3 sin 4u will look
like. Then check your prediction with a calculator.
85. If a, b are nonzero constants, show that the graph of r
a sin u b cos u is a circle. [Hint: Multiply both sides by r
and convert to rectangular coordinates.]
86. Prove that the coordinate conversion formulas are valid when
r 0. [Hint: If P has coordinates (x, y) and (r, u), with r 0,