251
4:
G.
F. Carrier and C.
E.
Pearson,
Ordinary Differential Equations,
Blais-
dell Pub.
Co.,
Waltham, MA, 1968. (Reprinted in SIAM
Classics
in
Applied
Mathematics
series, V0l.6, SIAM, Philadelphia, 1991.)
5. K.
0.
Ekiedrichs,
FZuid Dynamics,
Brown University, 1942. (Reprinted in
Springer, 1971.)
6.
J.
Kevorkian and
J.
D.
Cole,
Perturbation Methods
in
Applied Mathematics,
Springer-Verlag, New York, 1981.
7. P. A. Lagerstrom,
Matched Asymptotic Expansions
:
Ideas and Techniques,
Springer-Verlag, New York, 1988.
8. C.
G.
Lange,
On spurious solutions
of
singular perturbation problems,
Stud.
Appl. Math.
68
(1983), 227-257.
9.
J.
David Logan,
Applied Mathematics,
John Wiley and Sons, New York, 1987.
10.
J. A. Murdock,
Perturbation
:
Theory and Methods,
John Wiley
&
Sons,
New York, 1991.
11.
A.
H.
Nayfeh,
Introduction to Perturbation Techniques,
John Wiley
&
Sons,
New York, 1981.
12. R.
E.
O’Malley,
Jr.,
Topics in singular perturbations,
Adv. Math.
2
(1968),
13.
R.
E.
O’Malley,
Jr.,
Singular Perturbation Methods
for
Ordinary Differential
Equations,
Springer-Verlag, New York, 1991.
14. C.
H.
Ou
and R. Wong,
On a two-point boundary value problem with spurious
solutions,
Stud. Appl. Math.
111
(2003), 377-408.
15. C.
H.
Ou
and R. Wong,
Shooting method
for
nonlinear singularly perturbed
boundary-value problems,
Stud. Appl. Math., to appear.
16.
L.
Prandtl,
Uber Flussigkeits
-
bewegung bei kleiner Reibung,
Verhandlungen,
111.
Int. Math. Kongresses, Tuebner, Leipzig, 1905, 484-491.
17. J.
G.
Simmonds and
J.
E.
Mann,
A
First Look at Perturbation Theory,
Robert
E.
Krieger Publishing
Co.
,
Malabar, Florida, 1986.
18.
R.
Wong and
H.
Yang,
On an internal layer problem,
J.
Comp. Appl. Math.
144
(2002), 301-323.
19.
R.
Wong and
H.
Yang,
On a boundary-layer problem,
Stud. Appl. Math.
108
(2002), 369-398.
20. R. Wong and
H.
Yang,
On the Ackerberg-O’Malley Resonance,
Stud. Appl.
Math.
110
(2003), 157-179.
365-470.