734 P.W. Hawkes
M.H. Ellisman, R.A. Hennigar and N.J. Zaluzec, Eds.), 562–563 (Jones and
Begell, New York).
Crewe, A.V., Ruan, S., Korda, P. and Tsai, F.C. (2000). Studies of a magnetically
focused electrostatic mirror. I. Experimental test of the fi rst order properties.
J. Microsc. 197, 110–117.
Dellby, N., Krivanek, O.L. and Lupini, A.R. (2000). Progress in aberration-
corrected STEM. Microsc. Microanal. 6 (Supplement 2), 100–101.
Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E. and Lupini, A.R. (2001).
Progress in aberration-corrected scanning transmission electron micros-
copy. J. Electron Microsc. 50, 177–185.
Dellby, N., Krivanek, O.L., Murfi tt, M.F. and Nellist, P.D. (2005). Design and
testing of a quadrupole/octupole C
3
/C
5
aberration corrector. Microsc. Micro-
anal. 11 (Supplement 2), 2130–2131.
Deltrap, J.M.H. (1964). Correction of spherical aberration with combined quad-
rupole–octopole units. In Proceedings of the Third European Regional Conference
on Electron Microscopy, Prague (M. Titlbach, Ed.), Vol. A, 45–46 (Czechoslo-
vak Academy of Sciences, Prague).
Der-Shvarts, G.V. (1954). [Infl uence of imperfections of the rotational symme-
try of the focusing fi elds on the resolution of the magnetic objectives of
electron microscopes]. Zh. Tekh. Fiz. 24, 859–870.
Dragt, A.J. and Forest, E. (1986). Lie algebraic theory of charged-particle optics
and electron microscopes. Adv. Electron. Electron Phys. 67, 65–120.
Dunin-Borkowski, R.E., Kasama, T., Cervera, L., Twitchett, A.C., Midgeley, P.
A., Robins, A.C., Smith, D.W., Gronsky, J.J., Thomas, C.M., Fischione, P.E.,
Hetherington, C.J.D. and Kirkland, A.I. (2004). Aberration correction: Some
advantages and alternatives. In Materials Research in an Aberration-Free Envi-
ronment. Microsc. Microanal. 10 (Supplement 3), 22–23.
Dymnikov, A.D. and Yavor, S. Ya. (1963). [Four quadrupole lenses as an ana-
logue of an axially symmetric system]. Zh. Tekh. Fiz. 33, 851–858; Sov. Phys.
Tech. Phys. 8, 639–643.
Feng, J., Forest, E., Macdowell, A.A., Marcus, M., Padmore, H., Raoux, S.,
Robin, D., Scholl, A., Schlueter, R., Schmid, P., Stöhr, J., Wan, W., Wei, D.H.
and Wu, Y. (2005). An x-ray photoemission electron microscope using an
electron mirror aberration corrector for the study of complex materials. J.
Phys. Condensed Matter 17, S1339–S1350
Fey, G. (1980). Elektrische Versorgung eines elektronenoptischen Korrektivs.
Optik 55, 55–65.
Fink, R., Weiss, M.R., Umbach, E., Preikszas, D., Rose, H., Spehr, R., Hartel, P.,
Engel, W., Degenhardt, R., Wichtendahl, R., Kuhlenbeck, H., Erlebach, W.,
Ihmann, K., Schlögl, R., Freund, H.-J., Bradshaw, A.M., Lilienkamp, G.,
Schmidt, T., Bauer, E. and Benner, G. (1997). SMART: A planned ultrahigh-
resolution spectromicroscope for BESSY II. J. Electron Spectrosc. Relat. Phenom.
84, 231–250.
Foschepoth, M. and Kohl, H. (1998). Amplitude contrast—a way to obtain
directly interpretable high-resolution images in a spherical-aberration-
corrected transmission electron microscope. Phys. Status Solidi A 166,
357–366.
Freitag, B., Kujawa, S., Mul, P.M., Tiemeijer, P.C. and Snoeck, E. (2004a). First
experimental proof of spatial resolution improvement in a monochromized
and Cs-corrected TEM. In Proceedings of the Eighth Asia–Pacifi c Conference on
Electron Microscopy, Kanazawa (N. Tanaka, Y. Takano, H. Mori, H. Seguchi,
S. Iseki, H. Shimada and E. Simamura, Eds.), 18–19 (8APEM Publication
Committee, Uchinada, Ishikawa).
Freitag, B., Kujawa, S., Mul, P.M. and Tiemeijer, P.C. (2004b). First experimental
proof of spatial resolution improvement in a monochromized and Cs-