Time-Dependent Density-Functional Theory for Oscillator Strength Distribution 85
4.6 summary
We have presented a theoretical description for the oscillator strength distribution of molecules
for a full spectral region of valence electrons below 100 eV. We rely upon the TDDFT, which is an
extension of the DFT, so as to describe electron dynamics in the rst-principles calculation. We
rst describe a theoretical basis of the TDDFT to calculate the oscillator strength distribution.
We then show the calculated results of the oscillator strength distributions for molecules, taking
diatomic and triatomic molecules—N
2
, O
2
, H
2
O, and CO
2
; several hydrocarbon molecules of
small and medium size—acetylene, ethylene, benzene, and naphthalene; and fullerene C
60
as an
example of a large molecule. It has been shown that the TDDFT provides accurate and quantita-
tive descriptions for the oscillator strength distributions of these molecules. Finally, we mention
briey the applications of the TDDFT for other optical quantities, including hyperpolarizabilities,
the optical activities of chiral molecules, and the dielectric function for bulk materials.
reFerenCes
Bertsch, G. F., Iwata, J.-I., Rubio, A., and Yabana, K. 2000. Real-space, real-time method for the dielectric
function.
Phys. Rev. B 62: 7998–8002.
Brédas,
J. L., Adant, C., Tackx, P., Persoons, A., and Pierce, B. M. 1994. 3rd-order nonlinear-optical response
in
organic materials—Theoretical and experimental aspects. Chem. Rev. 94: 243–278.
Brion,
C. E., Tan, K. H., van der Wiel, M. J., and van der Leeuw, Ph. E. 1979. Dipole oscillator strengths for the
photoabsorption, photoionization and fragmentation of molecular oxygen. J. Electron Spectrosc. Relat.
Phenom.
17: 101–119.
Cacelli,
I., Carravetta, V., Rizzo, A., and Moccia, R. 1991. The calculation of photoionisation cross section of
simple
polyatomic molecules by L
2
methods. Phys. Rep. 205: 283–351.
Casida, M. E., Jamorski, C., Casida, K. C., and Salahub, D. R. 1998. Molecular excitation energies to high-lying
bound states from time-dependent density-functional response theory: Characterization and correction of
the
time-dependent local density approximation ionization threshold. J. Chem. Phys. 108: 4439–4449.
Chan,
W. F., Cooper, G., Sodhi, R. N. S., and Brion, C. E. 1993a. Absolute optical oscillator strengths for
discrete and continuum photoabsorption of molecular nitrogen (11–200 eV). Chem. Phys. 170: 81–97.
Chan, W. F., Cooper, G., and Brion, C. E. 1993b. The electronic spectrum of water in the discrete and continuum
regions. Absolute optical oscillator strengths for photoabsorption (6–200eV). Chem. Phys. 178: 387–400.
Chan, W. F., Cooper, G., and Brion, C. E. 1993c. The electronic spectrum of carbon dioxide. Discrete and con-
tinuum
photoabsorption oscillator strengths (6–203
eV).
Chem. Phys. 178: 401–413.
Chelikowsky,
J. R., Troullier, N., Wu, K., and Saad,
Y.
1994. Higher-order nite-difference pseudopotential
method: An
application to diatomic molecules. Phys. Rev. B 50: 11355–11364.
Cooper,
G., Olney, T. N., and Brion, C. E. 1995a. Absolute UV and soft x-ray photoabsorption of ethylene by
high
resolution dipole (e,e) spectroscopy. Chem. Phys. 194: 175–184.
Cooper,
G., Grodon, R., Burton, R., and Brion, C. E. 1995b. Absolute UV and soft x-ray photoabsorption of
acetylene by high resolution dipole (e,e) spectroscopy. J. Electron Spectrosc. Relat. Phenom. 73: 139–148.
de Souza, G. G. B., Boechat-Roberty, H. M., Rocco, M. L. M., and Lucas, C. A. 2002. Generalized oscillator
strength for the 1B2u←1Ag transition and the observation of forbidden processes at the C 1s spectrum of
the
naphthalene molecule. J. Electron Spectrosc. Relat. Phenom. 123: 315–321.
Dreuw,
A. and Head-Gordon, M. 2005. Single-reference ab initio methods for the calculation of excited states
of
large molecules. Chem. Rev. 105: 4009–4037.
Dupin,
H., Baraille, I., Larrieu, C., Rerat, M., and Dargelos,A. 2002. Theoretical determination of the ionization
cross-section of water. J. Mol. Struct. (Theochem) 577: 17–33.
Ekardt, W. 1984. Dynamical polarizability of small metal particles: Self consistent spherical jellium background
model. Phys. Rev. Lett. 52: 1925–1928.
Feng, R., Cooper, G., and Brion, C. E. 2002. Dipole (e,e) spectroscopic studies of benzene: Quantitative pho-
toabsorption in the UV, VUV and soft x-ray regions. J. Electron Spectrosc. Relat. Phenom. 123: 199–209.
Furche, F. andAhlrichs, R. 2002.Adiabatic time-dependent density functional methods for excited state properties.
J. Chem. Phys. 117: 7433–7447.
Gokhberg, K., Vysotskiy, V., Cederbaum, L. S., Storchi, L., Tarantelli, F., and Averbukh, V. 2009. Molecular
photoionization cross section by Stieltjes-Chebyshev moment theory applied to Lanczos pseudospectra.
J. Chem. Phys.
130: 064104–064108.