xvi
CONTENTS
13
Second-Order
Linear
Differential
Equations
348
13.1 General Properties of
ODEs.
. . . . . . . . . . . . 349
13.2 Existence and Uniqneness for First-Order DEs . 350
13.3 General Properties
of
SOLDEs . . . 352
13.4 The Wronskian. . . . . . . . . . . . 355
13.5 Adjoint Differential Operators. . . . 364
13.6 Power-Series Solntions
of
SOLDEs . 367
13.7 SOLDEs with Constant Coefficients 376
13.8 The WKB Method . . . . . . . . . . . . 380
13.9 Numerical Solntions of DEs . . . . . . . 383
13.10
Problems.
. . . . . . . . . . . . . . . . . . . . . . . . . . 394
14 Complex Aualysis
of
SOLDEs 400
14.1 Analytic Properties of Complex DEs 401
14.2 Complex SOLDEs . . . . . . . . . . 404
14.3 Fuchsian Differential Equations . . . 410
14.4 The Hypergeometric Functiou . . . . 413
14.5 Confiuent Hypergeometric Functions 419
14.6
Problems.
. . . . . . . . . . . . . . . . . 426
15
Integral
Transforms
and
Differential
Equations
433
15.1 Integral Representation
of
the Hypergeometric Function . . 434
15.2 Integral Representation
of
the Confiuent Hypergeometric
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
15.3 Integral Representation of Bessel Functions 438
15.4 Asymptotic Behavior of Bessel Functions. 443
15.5
Problems..
. . . . . . . . . . . . . . . . . . . . . . . .
..
445
V Operatorson Hilbert Spaces
16 An
Inlroduction
to
Operator
Theory
16.1 From Abstract to Integral and Differential Operators .
16.2 Bounded Operators in Hilbert Spaces . .
16.3 Spectra
of
Linear Operators . .
16.4 Compact Sets .
16.5 Compact Operators .
16.6 Spectrum
of
Compact Operators
16.7 Spectral Theoremfor Compact Operators .
16.8 Resolvents
16.9
Problems.
. . . . . . . . . . . . . . . . .
17
Integral
Equations
17.1 Classification.
449
451
451
453
457
458
464
467
473
480
485
488
488