NonlinearBook10pt November 20, 2007
ROBUST NONLINEAR CONTROL 701
Problem 11.7. Let ∆
A
given by (11.212) be defined by the positive
constants γ
1
, . . . , γ
p
and let ∆
A
given by (11.56) be characterized by α
i
=
αγ
i
β
i
1/2
, i = 1, . . . , p, where α
△
=
P
p
i=1
γ
i
β
i
and β
1
, . . . , β
p
are arbitrary
positive constants. Sh ow that the ellipse E
△
= {(δ
1
, . . . , δ
p
) :
P
p
i=1
δ
2
i
α
2
i
≤ 1}
circumscribes the rectangle R
△
= {(δ
1
, . . . , δ
p
) : |δ
i
| ≤ γ
i
, i = 1, . . . , p}, and
hence, ∆
A
given by (11.56) contains ∆
A
given by (11.212).
Problem 11.8. Consider the linear uncertain system (11.50) where
∆A ∈ ∆
A
and ∆
A
is given by (11.56). Let α be an arbitrary positive
constant. Show that the function
Ω(P ) =
α
4
I
n
+ α
−1
p
X
i=1
α
2
i
(A
T
i
P + P A
i
)
2
(11.216)
satisfies (11.52) with ∆
A
given by (11.56).
Problem 11.9. Consider the linear uncertain system (11.50) where
∆A ∈ ∆
A
and ∆
A
is given by (11.56). Let α be an arbitrary positive
constant. Show that for P > 0 th e function
Ω(P ) =
α
2
P +
α
−1
2
p
X
i=1
α
2
i
[A
2T
i
P + A
T
i
P A
i
+ P A
i
P
−1
A
T
i
P + P A
2
i
] (11.217)
satisfies (11.52) with ∆
A
given by (11.56).
Problem 11.10. Consider the linear uncertain system (11.50) where
∆A ∈ ∆
A
and ∆
A
is given by
∆
A
△
= {∆A ∈ R
n×n
: ∆A =
p
X
i=1
δ
i
A
i
, |δ
i
| ≤ γ
−1
, i = 1, . . . , p}, (11.218)
where γ > 0. For i = 1, . . . , p, let α
i
∈ R, β
i
> 0, S
i
∈ R
n×n
and define
Z
i
△
= [(S
i
+ S
T
i
)
2
]
1/2
and
ˆ
I
i
△
= [S
i
A
T
i
][S
i
A
T
i
]
†
. Show that th e function
Ω(P ) =
p
X
i=1
[γ
−2
(α
i
S
i
+ β
i
A
T
i
P )
T
(α
i
S
i
+ β
i
A
T
i
P ) + γ
−1
β
−1
i
|α
i
|Z
i
+ β
2
i
ˆ
I
i
(11.219)
satisfies (11.52) with ∆
A
given by (11.218). (Hint: First show that
ˆ
I
i
=
ˆ
I
T
i
=
ˆ
I
2
i
,
ˆ
I
i
S
i
= S
i
, and A
i
ˆ
I
i
= A
i
.)
Problem 11.11. Consider the linear uncertain system (11.50) where
∆A ∈ ∆
A
and ∆
A
is given by (11.56). Let α be an arbitrary positive
constant and for each P ∈ P
n
, let P
1
∈ R
n×m
and P
2
∈ R
m×n
satisfy