43
Ⱦɦɛɝɛ 4
ɊȻɋȻɇɀɍɋɖ Ƀ ɋɀɁɃɇɖ ɘɆɀɅɍɋɃɒɀɌɅɃɐ ɇȻɓɃɈ
4.1. ɋɠɡɣɧɨɶɠ ɬɩɬɭɩɺɨɣɺ ɧɛɳɣɨ
Ɇɚɬɟɦɚɬɢɱɟɫɤɢɟ ɦɨɞɟɥɢ ɫɢɧɯɪɨɧɧɨɣ ɢ ɚɫɢɧɯɪɨɧɧɨɣ ɦɚɲɢɧ (ȺɆ)
ɢ ɢɯ ɩɚɪɚɦɟɬɪɵ ɡɚɜɢɫɹɬ ɨɬ ɰɟɥɟɣ ɪɚɫɱɟɬɚ ɪɟɠɢɦɚ (ɭɫɬɚɧɨɜɢɜɲɢɣɫɹ ɢɥɢ
ɩɟɪɟɯɨɞɧɵɣ), ɟɝɨ ɫɬɚɞɢɢ, ɬɪɟɛɨɜɚɧɢɣ ɤ ɬɨɱɧɨɫɬɢ ɪɚɫɱɟɬɚ ɢ ɨɬ ɜɥɢɹɧɢɹ
ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɣ ɦɚɲɢɧɵ ɧɚ ɢɫɫɥɟɞɭɟɦɵɣ ɩɪɨɰɟɫɫ. ȼ ɷɬɨɦ ɫɦɵɫɥɟ ɛɭ-
ɞɟɦ ɪɚɡɥɢɱɚɬɶ ɫɥɟɞɭɸɳɢɟ ɪɟɠɢɦɧɵɟ ɫɨɫɬɨɹɧɢɹ ɦɚɲɢɧ:
1. ɇɨɪɦɚɥɶɧɵɣ ɭɫɬɚɧɨɜɢɜɲɢɣɫɹ ɪɟɠɢɦ, ɜ ɤɨɬɨɪɨɦ
ɫɢɧɯɪɨɧɧɚɹ
ɦɚɲɢɧɚ (ɋɆ) ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɫɢɧɯɪɨɧɧɵɦɢ ɩɚɪɚɦɟɬɪɚɦɢ ɞɥɹ
(0)t
.
2. ɍɫɬɚɧɨɜɢɜɲɢɣɫɹ ɪɟɠɢɦ ɄɁ, ɜ ɤɨɬɨɪɨɦ ɦɚɲɢɧɚ ɬɚɤɠɟ ɩɪɟɞɫɬɚɜ-
ɥɹɟɬɫɹ ɫɢɧɯɪɨɧɧɵɦɢ ɩɚɪɚɦɟɬɪɚɦɢ ɞɥɹ
t f
.
3. ɉɟɪɟɯɨɞɧɵɣ ɪɟɠɢɦ ɞɥɹ ɦɨɦɟɧɬɚ
0t . Ɂɞɟɫɶ, ɤɚɤ ɩɪɚɜɢɥɨ, ɡɚɞɚ-
ɱɚ ɨɝɪɚɧɢɱɟɧɚ ɪɚɫɱɟɬɨɦ ɧɚɱɚɥɶɧɨɝɨ ɡɧɚɱɟɧɢɹ ɩɟɪɢɨɞɢɱɟɫɤɨɣ ɫɥɚɝɚɟɦɨɣ
ɬɨɤɚ ɤɨɪɨɬɤɨɝɨ ɡɚɦɵɤɚɧɢɹ. Ⱦɥɹ ɷɬɢɯ ɭɫɥɨɜɢɣ ɦɚɲɢɧɚ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ
ɩɟɪɟɯɨɞɧɵɦɢ ɢɥɢ ɫɜɟɪɯɩɟɪɟɯɨɞɧɵɦɢ ɩɚɪɚɦɟɬɪɚɦɢ.
4. ɉɟɪɟɯɨɞɧɵɣ ɪɟɠɢɦ ɫ ɩɨɥɧɵɦ ɨɬɪɚɠɟɧɢɟɦ ɜɵɧɭɠɞɟɧɧɵɯ ɢ ɫɜɨ-
ɛɨɞɧɵɯ ɫɨɫɬɚɜɥɹɸɳɢɯ ɬɨɤɨɜ ɧɚ ɜɫɟɦ ɢɧɬɟɪɜɚɥɟ ɜɪɟɦɟɧɢ. Ⱦɥɹ ɪɟɲɟɧɢɹ
ɷɬɨɣ ɡɚɞɚɱɢ ɪɟɠɢɦ ɦɚɲɢɧɵ ɨɩɢɫɵɜɚɟɬɫɹ ɭɪɚɜɧɟɧɢɹɦɢ ɉɚɪɤɚ–Ƚɨɪɟɜɚ.
4.2. Ɍɰɠɧɛ
ɢɛɧɠɴɠɨɣɺ ɣ ɪɛɫɛɧɠɭɫɶ ɬɣɨɰɫɩɨɨɩɤ ɧɛɳɣɨɶ
ɝ ɮɬɭɛɨɩɝɣɝɳɠɧɬɺ ɫɠɡɣɧɠ
ɍɫɬɚɧɨɜɢɦ ɷɥɟɤɬɪɢɱɟɫɤɭɸ ɫɯɟɦɭ ɡɚɦɟɳɟɧɢɹ ɢ ɩɚɪɚɦɟɬɪɵ ɫɢɧ-
ɯɪɨɧɧɨɣ ɦɚɲɢɧɵ ɞɥɹ ɫɬɚɰɢɨɧɚɪɧɨɝɨ ɪɟɠɢɦɚ. ɇɚ ɪɢɫ. 4.1, ɚ ɩɪɟɞɫɬɚɜɥɟɧ
ɪɚɡɪɟɡ ɋɆ ɢ ɩɪɹɦɨɭɝɨɥɶɧɚɹ ɫɢɫɬɟɦɚ ɤɨɨɪɞɢɧɚɬ
, dq
, ɠɟɫɬɤɨ ɫɜɹɡɚɧɧɚɹ
ɫ ɪɨɬɨɪɨɦ. Ɉɫɶ
d ɧɚɡɵɜɚɟɬɫɹ ɩɪɨɞɨɥɶɧɨɣ ɨɫɶɸ ɦɚɲɢɧɵ, ɨɫɶ q – ɩɨɩɟ-
ɪɟɱɧɨɣ. ȼ ɩɪɨɞɨɥɶɧɨɣ ɨɫɢ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɬ ɞɜɟ ɦɚɝɧɢɬɧɨ ɫɜɹɡɚɧɧɵɟ
ɨɛɦɨɬɤɢ (ɫɦ. ɪɢɫ. 4.1, ɛ): ɨɛɦɨɬɤɚ ɜɨɡɛɭɠɞɟɧɢɹ (ɪɚɫɩɨɥɨɠɟɧɚ ɫɥɟɜɚ) ɢ
ɨɛɦɨɬɤɚ ɫɬɚɬɨɪɚ. ȼ ɩɨɩɟɪɟɱɧɨɣ ɨɫɢ ɪɚɫɩɨɥɚɝɚɟɬɫɹ ɬɨɥɶɤɨ ɤɨɧɬɭɪ ɫɬɚ-
ɬɨɪɧɨɣ ɨɛɦɨɬɤɢ. Ɋɟɚɤɬɢɜɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɤɚɠɞɨɝɨ ɤɨɧɬɭɪɚ ɜ ɫɨɨɬɜɟɬ-
ɫɬɜɢɢ ɫ ɮɢɡɢɤɨɣ ɹɜɥɟɧɢɣ ɩɪɟɞɫɬɚɜɥɟɧɨ ɜ ɜɢɞɟ ɞɜɭɯ ɫɨɫɬɚɜɥɹɸɳɢɯ:
x
,
– ɪɟɚɤɬɚɧɫɨɜ ɪɚɫɫɟɹɧɢɹ ɨɛɦɨɬɤɢ ɜɨɡɛɭɠɞɟɧɢɹ ɢ ɨɛɦɨɬɤɢ
ɫɬɚɬɨɪɚ;
ad
,
aq
x
– ɢɧɞɭɤɬɢɜɧɵɯ ɫɨɩɪɨɬɢɜɥɟɧɢɣ ɩɪɨɞɨɥɶɧɨɣ ɢ ɩɨɩɟɪɟɱ-
ɧɨɣ ɪɟɚɤɰɢɣ ɫɬɚɬɨɪɚ.