Bibliography 259
H. M. Soner (1995), Convergence of the phase-field equations to the Mullins-
Sekerka problem with kinetic undercooling, Arch. Rational Mech. Anal., 131,
139–197.
H. M. Soner (1997), Guinzburg–Landau equation and motion by mean curvature,
I: Convergence, J. Geom. Anal., 7, 437–475.
H. M. Soner and P. E. Souganidis (1993), Singularities and uniqueness of cylin-
drically symmetric surfaces moving by mean curvature, Commun. in Partial
Differential Equations, 18, 859–894.
H. M. Soner and N. Touzi (2002), Dynamic programming for stochastic target
problems and geometric flows, J. Eur. Math Soc., 4, 201–236.
H. M. Soner and N. Touzi (2003), A stochastic representation for mean curvature
type geometric flows, Ann Prob., 31, 1145–1165.
P. Soravia (1994), Generalized motion of a front propagating along its normal
direction: a differential games approach, Nonlinear Anal. TMA, 22, 1247–
1262.
M. Struwe (1996), Geometric evolution problems, Nonlinear partial differential
equations in differential geometry, Amer. Math. Soc. IAS/Park City Math.
Ser., 2, 257–339.
J. E. Taylor (1978), Crystalline variational problems, Bull. Amer. Math. Soc.,
84, 568–588.
J. E. Taylor (1991), Constructions and conjectures in crystalline nondifferential
geometry, In: Differential Geometry, (eds. B. Lawson and K. Tanenblat),
Proceedings of the Conference on Differential Geometry, Rio de Janeiro,
Pitman Monographs surveys Pure Appl. Math., 52, 321–336, Pitman, Lon-
don.
J. E. Taylor (1992), Mean curvature and weighted mean curvature, Acta Metall.,
40, 1475–1485.
J. E. Taylor, J. W. Cahn and C. A. Handwerker (1992), Geometric models of
crystalline growth, Acta Metall., 40, 1443–1474.
Y. Tonegawa (2000), Some remarks on the level set flow by anisotropic curvature,
Calc. Var. Partial Differential Equations, 10, 101–118.
N. S. Trudinger (1990), The Dirichlet problem for the prescribed curvature
equations, Arch. Rational Mech. Anal., 111, 153–179.
Y.-H. R. Tsai, Y. Giga and S. Osher (2003), A level set approach for computing
discontinuous solutions of Hamilton–Jacobi equations, Math. Comp., 72,
159–181.