256 Bibliography
M. Katsoulakis, G. T. Kossioris and F. Reitich (1995), Generalized motion by
mean curvature with Neumann conditions and the Allen–Cahn model for
phase transitions, J. Geom. Anal., 5, 255–279.
M. A. Katsoulakis and P. E. Souganidis (1994), Interacting particle systems and
generalized evolution of fronts, Arch. Rational Mech. Anal., 127, 133–157.
B. Kawohl and N. Kutev (2000), Comparison principle and Lipschitz regularity
for viscosity solutions of some classes of nonlinear partial differential equa-
tions, Funkcial. Ekvac., 43, 241–253.
C. I. Kim (2003), Uniqueness and existence results on the Hele–Shaw and the
Stefan problems, Arch. Rational Mech. Anal, 168, 299–328.
C. I. Kim (2004), A free boundary problem with curvature, Commun. in Partial
Differential Equations, 30, 121–138.
R. Kimmel (2004), Numerical geometry of images, Theory, algorithms, and ap-
plications, Springer, New York.
S. Kobayashi and K. Nomizu (1963), Foundations of differential geometry, vol I,
Interscience, John Wiley & Sons, New York.
S. Kobayashi and K. Nomizu (1969), Foundations of differential geometry, vol
II, Interscience, John Wiley & Sons, New York.
R. V. Kohn and S. Serfaty (2005), A deterministic-control-based approach to
motion by curvature, Comm. Pure Appl. Math., to appear.
Y. Kohsaka (2001), Free boundary problem for qusilinear parabolic equation with
fixed angle of contact to a boundary, Nonlinear Anal., THA, 45, 865–894.
S. Koike (2004), A beginner’s guide to the theory of viscosity solutions, MSJ
Memoirs, 13, Math. Soc. Japan, Tokyo.
M. Koiso and B. Palmer (2004), Geometry and stability of surfaces with constant
anisotropic mean curvature, preprint.
O. A. Ladyˇzhenskaya, V. A. Solonnikov and N. N. Ural´ceva (1968), Linear and
quasilinear equations of parabolic type, Translations of Mathematical Mono-
graphs, 23, Amer. Math. Soc., Providence.
P.-L. Lions (1982), Generalized solutions of Hamilton–Jacobi equations, Research
Notes in Mathematics 69,Pitman,Boston,MA.
P.-L. Lions (1983), Optimal control of diffusion processes and Hamilton–Jacobi–
Bellman equations, Part I: The dynamic programming principle and appli-
cations and Part II: Viscosity solutions and uniqueness, Commun. in Partial
Differential Equations, 8, 1101–1174 and 1229–1276.