246 Bibliography
G. Bellettini and M. Paolini (1994), Two examples of fattening for the curvature
flow with a driving force, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur.
Rend. Lincei (9) Mat. Appl., 5, 229–236.
G. Bellettini and M. Paolini (1995), Some results on minimal barriers in the sense
of De Giorgi applied to driven motion by mean curvature, Rend. Accad. Naz.
Sci. XL Mem. Mat. Appl. (5), 19, 43–67.
J. Bence, B. Merriman and S. Osher (1992), Diffusion motion generated by mean
curvature, Computational Crystal Grower Workshop, AMS, 73–83.
K. A. Brakke (1978), The motion of a surface by its mean curvature, Mathemat-
ical Notes 20, Princeton Univ. Press, Princeton, New Jersey.
L. Bronsard and R. V. Kohn (1991), Motion by mean curvature as the singular
limit of Ginzburg–Landau dynamics, J. Differential Equations, 90, 211–237.
R. Buckdahn, P. Cardaliaguet and M. Quincampoix (2001), A representation
formula for the mean curvature motion, SIAM J. Math. Anal. 33, 827-846.
L. A. Caffarelli (1989), Interior a priori estimates for solutions of fully nonlinear
equations, Ann. of Math. (2), 130, 189–213.
L. A. Caffarelli and X. Cabr´e (1995), Fully nonlinear elliptic equations, American
Math. Soc. Colloq. Pub., 43, American Math. Soc., Providence, RI.
L. Caffarelli, M. G. Crandall, M. Kocan and A. Swiech (1996), On viscosity
solutions of fully nonlinear equations with meansurable ingredients, Comm.
Pure Appl. Math., 49, 365–397.
L. Caffarelli, L. Nirenberg and J. Spruck (1985), The Dirichlet problem for
nonlinear second-order elliptic equations, III: Functions of the eigenvalues of
the Hessian, Acta Math., 155, 261–301.
L. Caffarelli, L. Nirenberg and J. Spruck (1988), Nonlinear second-order elliptic
equations V. The Dirichlet problem for Weingarten hypersurfaces, Comm.
Pure Appl. Math., 41, 47–70.
J. W. Cahn and D. W. Hoffman (1974), A vector thermodynamics for anisotropic
surfaces – 2. Curved and faceted surfaces, Acta Metall., 22, 1205–1214.
J. W. Cahn, J. E. Taylor and C. A. Handwerker (1991), Evolving crystal forms:
Frank’s characteristics revisited, Sir Charles Frank, OBE, ERS: An eight-
ieth birthday tribute (eds. R. G. Chambers et al), Adam Hilger, Bristol,
Philadelphia and New York, pp. 88–118.
F. Camilli (1998), A stability property for the generalized mean curvature flow
equation, Adv. in Differential Equations, 3, 815–846.