48 1 Probability
References
1. P.Z. Peebles, Probability, Random Variables, and Random Signal Principles, McGraw–Hill,
New York, 1993.
2. A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill,
New York, 1984.
3. G.R. Cooper and C.D. McGillem, Probability Methods of Signal and System Analysis, Oxford
University Press, New York, 1999.
4. “statistics” Encyclopedia Britannica Online. http://search.eb.com/bol/topic?eu=115242&
sctn=8
5. R.D. Yates and D.J. Goodman, Probability and Stochastic Processes, John Wiley, New York,
1999.
6. A. Erramilli, G. Gordon, and W. Willinger, “Applications of fractals in engineering for realistic
traffic processes”, International Teletraffic Conference, Vol. 14, pp. 35–44, 1994.
7. W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar nature of Ethernet
traffic”, IEEE/ACM Transactions on Networking, vol. 2, pp. 1–15, 1994.
8. W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, “Self-similarity through high variability
statistical analysis of Ethernet LAN traffic at the source level”, IEEE/ACM Transactions on
Networking, vol. 2, 1997.
9. T. Hettmansperger and M. Keenan,“Tailweight, statistical interference and families of distri-
butions – A brief survey” in Statistical Distributions in Scientific Work, vol. 1, G.P. Patil et al.
ed., Kluwer, Boston, 1980.
10. R. Syski, Random Processes: A First Look, Marcel Dekker, New York, 1979.
11. W.H. Press, S.T. Teukolsky, W.T. Vetterling, and B.P. Fhannery, Numerical Recipes in C: The
Art of Scientific Computing, Cambridge University Press, Cambridge, 1992.