6 Calculation of performance characteristics and partial load behaviour
255
still acceptable. Compared to the usually site-independent, fixed values of the
recommended minimum distances between the wind turbines, these wind regime
dependent minimum distance values allow for a more sophisticated wind farm siting.
Concluding the discussion of the application of numerical flow simulation to
wind turbines, it should be mentioned that there is still research needed before
CFD becomes a commonly used tool in wind turbine and wind farm design.
References
[1] Althaus, D.: Profilpolaren für den Modellflug (Profile characteristics for model
flight), Neckar Verlag, Villingen Schwenningen, Germany 1985
[2] Glauert, H.: The Analysis of Experimental Results in the Windmill Brake and Vortex
Ring States of an Airscrew, Reports and Memoranda, No. 1023, 1926
[3] Naumann, A.: Luftschrauben im Bremsbereich (Air screws for braking), Yearbook of
German aviation research 1940, pp. 1745
[4] Prandtl, L.; Oertel, H. (Hrsg.): Prandtl – A guide through fluid mechanics,
F. W. Durand: Aerodynamics, vol. 4, Vieweg, Braunschweig, Germany 1990
[5] Eggleston, D. M.; Stoddard, F. S.: Wind Turbine Engineering Design, Van Nostrand
Reinhold, New York, 1987
[6] Fateev, E. M.: Windmotors and Windpowerstations, Moscow 1948
[7] Ostowari, C., Naik, D.: Post Stall Studies of Untwisted Varying Aspect Ratio Blades
with NACA 44XX Series Airfoil Sections - Part II, Wind Engineering, Vol 9 No. 3
1985, p. 149ff
[8] Hoerner, S. F.: Fluid Dynamic Drag, self-published, Bricktown, N. J., 1965 und
Fluid Dynamic Lift, published, Albuquerque, 1985
[9] Snel, H. et al.: Sectional Prediction of 3D-Effects for Stalled Flow on Rotating Blades
and Comparison with Measurements, Proceedings ECWEC 1993, Travemünde
[10] Sörensen, J.N. (Editor): VISCWIND – Viscous Effects on Wind Turbine Blades,
Department of Energy Engineering, Technical University of Denmark, 1999
[11] Øye, S.: Dynamic Stall – simulated as time lag of separation,
IEA 4th symposium on aerodynamics for wind turbines, Rome 1990
[12] Schepers, J.G., Snel, H.: Dynamic Inflow, Yawed Conditions and Partial Span Pitch
Control, ECN-C—95-056, Petten 1995
[13] Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics,
Springer Verlag, 1997
[14] Siekmann, H. E., Thamsen, P.U.: Strömungslehre – Grundlagen (Fluid dynamics -
Basics), Springer Verlag, 2007
[15] Hesse, J.: Numerische Untersuchung der dreidimensionalen Rotorblattumströmung an
Windkraftanlagen (Numerical investigation of the three-dimensional flow around ro-
tor blades of wind turbines), Diploma thesis, Technical University of Berlin, Germany
2004
[16] Himmelskamp, H.: Profile investigation on a rotating airscrew,
Doktorarbeit (Ph. D. thesis), Göttingen, 1945
[17] Milborrow, D.J., Ross, J.N.: Airfoil characteristics of rotating blades,
IEA, LS-WECS, 12
th
expert meeting, Kopenhagen, Denmark 1984
[18] Sörensen, J.: Prediction of three-dimensional stall with a wind turbine blade using
three level viscous-inviscid-interaction model, Proc. European Windenergy Associa-
tion Conference and Exhibition, Rom, 1986
[19] Corten, G.P.: Flow Separation on Wind Turbine Blades,
PhD thesis, University of Utrecht, Netherlands 2001