mikos: “9026_c027” — 2007/4/9 — 15:53 — page 21 — #21
Cardiac Tissue Engineering 27-21
[80] Vandenburgh H., Del Tatto M, Shansky J., Lemaire J., Chang A., Payumo F., Lee P., Goodyear A.,
and Raven L. Tissue-engineered skeletal muscle organoids for reversible gene therapy. Hum. Gene
Ther. 1996; 7: 2195–2200.
[81] Holubarsch C., Ruf T., Goldstein D.J., Ashton R.C., Nickl W., Pieske B., Pioch K., Ludemann J.,
Wiesner S., Hasenfuss G., Posival H., Just H., and Burkhoff D. Existence of the Frank–Starling
mechanism in the failing human heart. Investigations on the organ, tissue, and sarcomere levels.
Circulation 1996; 94: 683–689.
[82] Rau T., Nose M., Remmers U., Weil J., Weissmuller A., Davia K., Harding S., Peppel K., Koch W.J.,
and Eschenhagen T. Overexpression of wild-type Galpha(i)-2 suppresses beta-adrenergic signaling
in cardiac myocytes. FASEB J. 2003; 17: 523–525.
[83] El-Armouche A., Rau T., Zolk O., Ditz D., Pamminger T., Zimmermann W.H., Jackel E., Hard-
ing S.E., Boknik P., Neumann J., and Eschenhagen T. Evidence for protein phosphatase inhibitor-1
playing an amplifier role in beta-adrenergic signaling in cardiac myocytes. FASEB J. 2003; 17:
437–439.
[84] Zolk O., Munzel F., and Eschenhagen T. Effects of chronic endothelin-1 stimulation on cardiac
myocyte contractile function. Am. J. Physiol. Heart Circ. Physiol. 2004; 286: H1248–H1257.
[85] Zimmermann W.H., Didie M., Wasmeier G.H., Nixdorff U., Hess A., Melnychenko I., Boy O.,
Neuhuber W.L., Weyand M., and Eschenhagen T. Cardiac grafting of engineered heart tissue in
syngenic rats. Circulation 2002; 106: I151–I157.
[86] Li R.K., Yau T.M., Weisel R.D., Mickle D.A., Sakai T., Choi A., and Jia Z.Q. Construction of a
bioengineered cardiac graft. J. Thorac. Cardiovasc. Surg. 2000; 119: 368–375.
[87] Kofidis T., Akhyari P., Wachsmann B., Boublik J., Mueller-Stahl K., Leyh R., Fischer S., and
Haverich A. A novel bioartificial myocardial tissue and its prospective use in cardiac surgery. Eur.
J. Cardiothorac. Surg. 2002; 22: 238–243.
[88] Kofidis T., Lenz A., Boublik J., Akhyari P., Wachsmann B., Mueller-Stahl K., Hofmann M., and
Haverich A. Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix.
Biomaterials 2003; 24: 5009–5014.
[89] van Luyn M.J., Tio R.A., Gallego y van Seijen X.J., Plantinga J.A., de Leij L.F., DeJong-
ste M.J., and van Wachem P.B. Cardiac tissue engineering: characteristics of in unison contracting
two- and three-dimensional neonatal rat ventricle cell (co)-cultures. Biomaterials 2002; 23:
4793–4801.
[90] Evans H.J., Sweet J.K., Price R.L., Yost M., and Goodwin R.L. Novel 3D culture system
for study of cardiac myocyte development. Am J. Physiol. Heart Circ. Physiol. 2003; 285:
H570–H578.
[91] Matthews J.A., Wnek G.E., Simpson D.G., and Bowlin G.L. Electrospinning of collagen nanofibers.
Biomacromolecules 2002; 3: 232–238.
[92] Shimizu T., Yamato M., Akihiko K., and Okano T. Two-dimensional manipulation of cardiac
myocyte sheets utilizing temperature-responsive culture dishes augments pulsatile amplitude.
Tissue Eng. 2001; 7: 141–151.
[93] Shimizu T., Yamato M., Akutsu T., Shibata T., Isoi Y., Kikuchi A., Umezu M., and Okano T.
Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured
cardiomyocyte sheets. J. Biomed. Mater. Res. 2002; 60: 110–117.
[94] Carrier R.L., Rupnick M., Langer R., Schoen F.J., Freed L.E., and Vunjak-Novakovic G. Perfusion
improves tissue architecture of engineered cardiac muscle. Tissue Eng. 2002; 8: 175–188.
[95] Carrier R.L., Rupnick M., Langer R., Schoen F.J., Freed L.E., and Vunjak-Novakovic G. Effects of
oxygen on engineered cardiac muscle. Biotechnol. Bioeng. 2002; 78: 617–625.
[96] Radisic M., Yang L., Boublik J., Cohen R.J., Langer R., Freed L.E., and Vunjak-Novakovic G.
Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol.
Heart Circ. Physiol. 2004; 286: H507–H516.
[97] Li R.K., Jia Z.Q., Weisel R.D., Mickle D.A., Choi A., and Yau T.M. Survival and function of
bioengineered cardiac grafts. Circulation 1999; 100: II63–II69.