206 Handbook of Chemoinformatics Algorithms
7. Tropsha, A., Predictive QSAR (quantitative structure activity relationships) modeling.
In: J. Mason (Ed.), Comprehensive Medicinal Chemistry II. V. 4 (Computer-Aided Drug
Design). Elsevier, Oxford, UK, pp. 149–165, 2006.
8. Tropsha,A., Gramatica, P., and Gombar,V. K., The importance of being earnest:Validation
is the absolute essential for successful application and interpretation of QSPR models.
Quant. Struct. Act. Relat. Comb. Sci. 2003, 22, 69–77.
9. Tropsha, A. and Golbraikh, A., Predictive QSAR modeling workflow, model applicability
domains, and virtual screening. Curr. Pharm. Des. 2007, 13, 3494–3504.
10. Cho, S. J., Zheng, W., and Tropsha, A., Rational combinatorial library design. 2. Rational
design of targeted combinatorial peptide libraries using chemical similarity probe and the
inverse QSAR approaches. J. Chem. Inf. Comput. Sci. 1998, 38, 259–268.
11. Tropsha, A., Cho, S. J., and Zheng, W., “New Tricks for an Old Dog”: Development and
application of novel QSAR methods for rational design of combinatorial chemical libraries
and database mining. In:A. L. Parrill and M. R. Reddy (Eds), Rational Drug Design: Novel
Methodology and Practical Applications. American Chemical Society, Washington, pp.
198–211, 1999.
12. Gussio, R., Pattabiraman, N., Kellogg, G. E., and Zaharevitz, D. W., Use of 3D
QSAR methodology for data mining the National Cancer Institute repository of small
molecules: Application to HIV-1 reverse transcriptase inhibition. Methods 1998, 14,
255–263.
13. Shen, M., Beguin, C., Golbraikh,A., Stables, J. P., Kohn, H., and Tropsha,A., Application
of predictive QSAR models to database mining: Identification and experimental validation
of novel anticonvulsant compounds. J. Med. Chem. 2004, 47, 2356–2364.
14. Medina-Franco, J. L., Golbraikh, A., Oloff, S., Castillo, R., and Tropsha, A., Quanti-
tative structure–activity relationship analysis of pyridinone HIV-1 reverse transcriptase
inhibitors using the k nearest neighbor method and QSAR-based database mining.
J. Comput. Aided Mol. Des. 2005, 19, 229–242.
15. Oloff, S., Mailman, R. B., and Tropsha, A., Application of validated QSAR models of D1
dopaminergic antagonists for database mining. J. Med. Chem. 2005, 48, 7322–7332.
16. Zhang, S., Wei, L., Bastow, K., Zheng, W., Brossi, A., Lee, K. H., and Tropsha, A., Antitu-
mor agents 252. Application of validated QSAR models to database mining: Discovery of
novel tylophorine derivatives as potential anticancer agents. J. Comput. Aided Mol. Des.
2007, 21, 97–112.
17. Hsieh, J. H., Wang, X. S., Teotico, D., Golbraikh, A., and Tropsha, A., Differentiation of
AmpC beta-lactamase binders vs. decoys using classification KNN QSAR modeling and
application of the QSAR classifier to virtual screening. J. Comput. Aided Mol. Des. 2008,
22, 593–609.
18. Tang, H., Wang, X. S., Huang, X. P., Roth, B. L., Butler, K. V., Kozikowski, A. P., Jung,
M., and Tropsha, A., Novel inhibitors of human histone deacetylase (HDAC) identified
by QSAR modeling of known inhibitors, virtual screening, and experimental validation.
J. Chem. Inf. Model. 2009, 49, 461–476.
19. Tropsha, A. and Zheng, W., Identification of the descriptor pharmacophores using vari-
able selection QSAR: Applications to database mining. Curr. Pharm. Des. 2001, 7,
599–612.
20. Hoffman, B., Cho, S. J., Zheng, W., Wyrick, S., Nichols, D. E., Mailman, R. B.,
and Tropsha, A., Quantitative structure–activity relationship modeling of dopamine
D(1) antagonists using comparative molecular field analysis, genetic algorithms-
partial least-squares, and K nearest neighbor methods. J Med. Chem. 1999, 42,
3217–3226.