Predictive Quantitative Structure–Activity Relationships Modeling 231
22. Guha, R., Dutta, D., Jurs, P. C., and Chen, T., R–NN curves:An intuitive approach to outlier
detection using a distance based method. J. Chem. Inf. Model. 2006, 46, 1713–1722.
23. Kuhne, R., Ebert, R. U., and Schuurmann, G., Model selection based on structural
similarity-method description and application to water solubility prediction. J. Chem.
Inf. Model. 2006, 46, 636–641.
24. Zhang, L., Zhu, H., Oprea, T. I., Golbraikh, A., and Tropsha, A., QSAR modeling of the
blood–brain barrier permeability for diverse organic compounds. Pharm. Res. 2008, 25,
1902–1914.
25. Tetko, I. V., Bruneau, P., Mewes, H. W., Rohrer, D. C., and Poda, G. I., Can we estimate
the accuracy of ADME-tox predictions? Drug Discov. Today 2006, 11, 700–707.
26. Netzeva, T. I., Worth, A., Aldenberg, T., Benigni, R., Cronin, M. T., Gramatica, P.,
Jaworska, J. S., et al., Current status of methods for defining the applicability domain
of (Quantitative) structure–activity relationships. The Report and Recommendations of
ECVAM Workshop 52. Altern. Lab Anim. 2005, 33, 155–173.
27. Manallack, D. T., Tehan, B. G., Gancia, E., Hudson, B. D., Ford, M. G., Livingstone, D. J.,
Whitley, D. C., and Pitt, W. R., A consensus neural network-based technique for dis-
criminating soluble and poorly soluble compounds. J. Chem. Inf. Comput. Sci. 2003, 43,
674–679.
28. Bruneau, P. and McElroy, N. R., LogD7.4 Modeling using Bayesian regularized neural
networks. Assessment and correction of the errors of prediction. J. Chem. Inf. Model.
2006, 46, 1379–1387.
29. Bruneau, P., Search for predictive generic model of aqueous solubility using Bayesian
neural nets. J. Chem. Inf. Comput. Sci. 2001, 41, 1605–1616.
30. Tetko, I.V., Sushko, I., Pandey,A. K., Zhu, H., Tropsha,A., Papa, E., Oberg,T., Todeschini,
R., Fourches, D., and Varnek, A., Critical assessment of QSAR models of environmental
toxicity against tetrahymena pyriformis: Focusing on applicability domain and overfitting
by variable selection 1. J. Chem. Inf. Model. 2008, 48, 1733–1746.
31. Sachs, L., Applied Statistics: A Handbook of Techniques. Springer, New York, 1984.
32. Shen, M., Beguin, C., Golbraikh,A., Stables, J. P., Kohn, H., and Tropsha,A., Application
of predictive QSAR models to database mining: Identification and experimental validation
of novel anticonvulsant compounds. J. Med. Chem. 2004, 47, 2356–2364.
33. Votano, J. R., Parham, M., Hall, L. H., Kier, L. B., Oloff, S., Tropsha, A., Xie, Q., and
Tong, W., Three new consensus QSAR models for the prediction of Ames genotoxicity.
Mutagenesis 2004, 19, 365–377.
34. Zhang, S., Wei, L., Bastow, K., Zheng, W., Brossi, A., Lee, K. H., and Tropsha, A., Antitu-
mor agents 252. Application of validated QSAR models to database mining: Discovery of
novel tylophorine derivatives as potential anticancer agents. J. Comput. Aided Mol. Des.
2007, 21, 97–112.
35. Zhu, H., Tropsha, A., Fourches, D., Varnek, A., Papa, E., Gramatica, P., Oberg, T., Dao, P.,
Cherkasov, A., and Tetko, I. V., Combinatorial QSAR modeling of chemical toxicants
tested against tetrahymena pyriformis. J. Chem. Inf. Model. 2008, 48, 766–784.
36. Vasanthanathan, P., Lakshmi, M., Arockia, B. M., Gupta, A. K., and Kaskhedikar, S. G.,
QSAR study of 3-phenyl-5-acyloxymethyl-2H,5H-furan-2-ones as antifungal agents: The
dominant role of electronic parameter. Chem. Pharm. Bull. (Tokyo) 2006, 54, 583–587.
37. Jorgensen, W. L. and Tirado-Rives, J., QSAR/QSPR and proprietary data. J. Chem. Inf.
Model. 2006, 46, 937.
38. Maggiora, G. M., On outliers and activity cliffs—why QSAR often disappoints. J
.
Chem.
Inf. Model. 2006, 46, 1535.