Predictive Quantitative Structure–Activity Relationships Modeling 209
64. Zhang, L., Zhu, H., Oprea, T. I., Golbraikh, A., and Tropsha, A., QSAR modeling of the
blood–brain barrier permeability for diverse organic compounds. Pharm. Res. 2008, 25,
1902–1914.
65. Zhu, H.,Ye, L., Richard,A., Golbraikh,A., Wright, F.A., Rusyn, I., and TropshaA.A novel
two-step hierarchical quantitative structure-activity relationship modeling work flow for
predicting acute toxicity of chemicals in rodents. Environ. Health Perspect. 2009, 117,
1257–1264.
66. Dixon, W. T. Processing data for outliers. Biometrics, 1953, 9, 74–89.
67. Fallon,A. and Spada, C., Detection and accommodation of outliers in normally distributed
data sets, http://ewr.cee.vt.edu/environmental/teach/smprimer/outlier/outlier.html, 1997.
68. Environmental Protection Agency. Statistical training course for ground-water monitoring
data analysis, EPA/530-R-93-003, Office of Solid Waste, Washington, DC, 1992.
69. Taylor, J. K. Quality assurance of chemical measurements, Lewis Publishers, Chelsea,
MI, 1987.
70. Kanji, G. K., 100 Statistical Tests. Sage, 1993.
71. Yen, S.-J. and Lee, Y.-S., Under-sampling approaches for improving prediction of the
minority class in an imbalanced dataset. LectureNotes in Controland Information Sciences
2006, 344, 731–740.
72. Kubat, M. and Matwin, S., Addressing the curse of imbalanced training sets: One sided
selection. Proceedings of the 14th International Conference on Machine Learning, San
Francisco, CA, Morgan Kaufmann, 1997.
73. Japkowicz, N., Learning from imbalanced datasets: A comparison of various strategies.
AAAIWorkshop, Learning From Imbalanced Datasets, PapersFrom TheAAAIWorkshop,
AAAI Press, Menlo Park, CA, 2000.
74. Golbraikh, A. and Tropsha, A., Beware of Q2! J. Mol. Graph. Model. 2002, 20, 269–276.
75. Organisation for Economic and Co-operation Development (OECD), Quantitative
Structure–Activity Relationships [(Q)SARs] Project, http://www.oecd.org/document/23/
0,3343, en_2649_34365_33957015_1_1_1_1,00.html, 2008.
76. Harju, M., Hamers, T., Kamstra, J. H., Sonneveld, E., Boon, J. P., Tysklind, M., andAnder-
sson, P. L., Quantitative structure–activity relationship modeling on in vitro endocrine
effects and metabolic stability involving 26 selected brominated flame retardants. Environ.
Toxicol. Chem. 2007, 26, 816–826.
77. Sharma, D., Narasimhan, B., Kumar, P., and Jalbout, A., Synthesis and QSAR evaluation
of 2-(substituted phenyl)-1H-benzimidazoles and [2-(substituted phenyl)-benzimidazol-
1-Yl]-pyridin-3-Yl-methanones. Eur. J. Med. Chem. 2009, 44, 1119–1127.
78. Zvinavashe, E., van den, B. H., Soffers, A. E., Vervoort, J., Freidig, A., Murk, A. J., and
Rietjens, I. M., QSAR models for predicting in vivo aquatic toxicity of chlorinated alkanes
to fish. Chem. Res. Toxicol. 2008, 21, 739–745.
79. Padmanabhan, J., Parthasarathi, R., Subramanian, V., and Chattaraj, P. K., Group philic-
ity and electrophilicity as possible descriptors for modeling ecotoxicity applied to
chlorophenols. Chem. Res. Toxicol. 2006, 19, 356–364.
80. Song, M. and Clark, M., Development and evaluation of an in silico model for HERG
binding. J. Chem. Inf. Model. 2006, 46, 392–400.
81. Iyer, M., Zheng, T., Hopfinger, A. J., and Tseng, Y. J., QSAR analyses of skin penetration
enhancers. J. Chem. Inf. Model. 2007, 47, 1130–1149.
82. Kovatcheva,A., Golbraikh,A., Oloff,S., Xiao,Y. D., Zheng,W.,Wolschann, P., Buchbauer,
G., and Tropsha, A., Combinatorial QSAR of ambergris fragrance compounds. J. Chem.
Inf. Comput. Sci. 2004, 44, 582–595.
83. de Cerqueira, L. P., Golbraikh, A., Oloff, S., Xiao, Y., and Tropsha, A., Combinatorial
QSAR modeling of P-glycoprotein substrates. J.
Chem. Inf. Model. 2006, 46, 1245–1254.