168 Handbook of Chemoinformatics Algorithms
37. Hert, J.,Willett, P., Wilton, J. D. J.,Acklin, P.,Azzaoui, K., Jacoby, E., and Schuffenhauer,
A., New methods for ligand-based virtual screening: Use of data fusion and machine
learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Model. 2006,
46, 462–470.
38. Reddy, A. S., et al., Virtual screening in drug discovery—a computational perspective.
Curr. Protein Pept. Sci. 2007, 8, 329–351.
39. Kuntz, I. D., et al., A geometric approach to macromolecule–ligand interactions. J. Mol.
Biol. 1982, 161, 269–288.
40. DesJarlais, R. L., et al., Docking flexible ligands to macromolecular receptors by
molecular shape. J. Med. Chem. 1986, 29, 2149–2153.
41. Goodsell, D. S. and Olson,A. J.,Automated docking of substrates to proteins by simulated
annealing. Proteins 1990, 8, 195–202.
42. Morris, G. M., et al., Automated docking using a Lamarckian genetic algorithm and an
empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662.
43. Judson, R. S., Jaeger, E. P., and Treasurywala, A. M., A genetic algorithm based method
for docking flexible molecules. J. Mol. Struct.—THEOCHEM, 1994, 308, 191–206.
44. Oshiro, C. M., Kuntz, I. D., and Dixon, J. S., Flexible ligand docking using a genetic
algorithm. J. Comput. Aided Mol. Des. 1995, 9, 113–130.
45. Jones, G., et al., Development and validation of a genetic algorithm for flexible docking.
J. Mol. Biol. 1997, 267, 727–748.
46. Friesner, R. A., et al., Glide: A new approach for rapid, accurate docking and scoring. 1.
Method and assessment of docking accuracy. J. Med. Chem. 2004, 47,1739–1749.
47. Halgren, T.A., et al., Glide: A new approach for rapid, accurate docking and scoring. 2.
Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759.
48. Ruben, A., Maxim, T., and Dmitry, K., ICM: A new method for protein modeling
and design: Applications to docking and structure prediction from the distorted native
conformation. J. Comput. Chem. 1994, 15, 488–506.
49. McMartin, C. and Bohacek, R. S., QXP: Powerful, rapid computer algorithms for
structure-based drug design. J. Comput. Aided Mol. Des. 1997, 11, 333–344.
50. Liu, M. and Wang, S., MCDOCK: A Monte Carlo simulation approach to the molecular
docking problem. J. Comput. Aided Mol. Des. 1999, 13, 435–451.
51. Ewing, T. J., et al., DOCK 4.0: Search strategies for automated molecular docking of
flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411–428.
52. Rarey, M., et al., A fast flexible docking method using an incremental construction
algorithm. J. Mol. Biol. 1996, 261, 470–489.
53. Lorber, D. M. and Shoichet, B. K. Flexible ligand docking using conformational
ensembles. Protein Sci. 1998, 7, 938–950.
54. McGann, M. R., et al., Gaussian docking functions.
Biopolymer
s 2003, 68, 76–90.
55. Miller, M. D., et al., FLOG: A system to select ‘quasi-flexible’ ligands complementary
to a receptor of known three-dimensional structure. J. Comput. Aided Mol. Des. 1994, 8,
153–174.
56. Polgar, T. and Keseru, G. M., Ensemble docking into flexible active sites. Critical
evaluation of FlexE against JNK-3 and beta-secretase. J. Chem. Inf. Model 2006, 46,
1795–1805.
57. Claussen, H., et al., FlexE: Efficient molecular docking considering protein structure
variations. J. Mol. Biol. 2001, 308, 377–395.
58. Wei, B. Q., et al., Testing a flexible-receptor docking algorithm in a model binding site.
J. Mol. Biol. 2004, 337, 1161–1182.
59. Cavasotto, C. N., Kovacs, J. A., and Abagyan, R. A., Representing receptor flexibility in
ligand docking through relevant normal modes. J. Am. Chem. Soc. 2005, 127, 9632–9640.