142 Handbook of Chemoinformatics Algorithms
65. Clark, M., Cramer, R., Jones, D., Patterson, D., and Simeroth, P., Comparative molecular
field analysis (CoMFA). 2. Toward its use with 3D structural databases. Tetrahedron
Comput. Methodol., 1990, 3, 47–59.
66. Kearsley, S. K. and Smith, G. M., An alternative method for the alignment of molecular
structures: Maximizing electrostatic and steric overlap. Tetrahedron Comput. Methodol.,
1990, 3, 615–633.
67. Viswanadhan, V. N., Ghose, A. K., Revankar, G. R., and Robins, R. K., Atomic
physicochemical parameters for three dimensional structure directed quantitative
structure–activity relationships. 4. Additional parameters for hydrophobic and disper-
sive interactions and their application for an automated superposition of certain naturally
occurring nucleoside antibiotics. J. Chem. Inf. Comput. Sci., 1989, 29, 163–172.
68. Coutsias, E. A., Seok, C., and Dill, K. A., Using quaternions to calculate RMSD. J.
Comput. Chem., 2004, 25, 1849–1857.
69. Kearsley, S. K., An algorithm for the simultaneous superposition of a structural series.
J. Comput. Chem., 1990, 11, 1187–1192.
70. Klebe, G., Mietzner, T., and Weber, F., Different approaches toward an automatic
structural alignment of drug molecules: Applications to sterol mimics, thrombin and
thermolysin inhibitors. J. Comput. Aided Mol. Des., 1994, 8, 751–778.
71. Pastor, M., Cruciani, G., McLay, I., Pickett, S., and Clementi, S., Grid-independent
descriptors (GRIND): A novel class of alignment independent three-dimensional
molecular descriptors. J. Med. Chem., 2000, 43, 3233–3243.
72. Crivori, P., Cruciani, G., Carrupt, P.-A., and Testa, B., Predicting blood–brain bar-
rier permeation from three-dimensional molecular structure. J. Med. Chem., 2000, 43,
2204–2216.
73. Cruciani, G., Pastor, M., and Guba, W., VolSurf: A new tool for the pharmacokinetic
optimization of lead compounds. Eur. J. Pharm. Sci., 2000, 11(Suppl 2), S29–S39.
74. Miller, K. J., Additivity methods in molecular polarizability. J. Am. Chem. Soc., 1990,
112, 8533–8542.
75. Wermuth, C. G., Ganellin, C. R., Lindberg, P., and Mitscher, L. A., Glossary of terms
used in medicinal chemistry. Pure Appl. Chem., 1998, 70, 1129–1143.
76. Sheridan, R. P., Nilakantan, R., Dixon, J. S., and Venkataraghavan, R., The ensemble
approach to distance geometry: Application to the nicotinic pharmacophore. J. Med.
Chem., 1986, 29, 899–906.
77. Dammkoehler, R. A., Karasek, S. F., Shands, E. F., and Marshall, G. R., Con-
strained search of conformational hyperspace. J. Comput. Aided Mol. Des., 1989, 3,
3–21.
78. Martin, Y. C., Bures, M. G., Danaher, E. A., DeLazzer, J., Lico, I., and Pavlik, P. A., A
fast new approach to pharmacophore mapping and its application to dopaminergic and
benzodiazepine agonists. J. Comput. Aided Mol. Des., 1993, 7, 83–102.
79. Barnum, D., Greene, J., Smellie,A., and Sprague, P., Identification of common functional
configurations among molecules. J. Chem. Inf. Comput. Sci., 1996, 36, 563–571.
80. Bron, C. and Kerbosch, J., Finding all cliques of an undirected graph (algorithm 457).
Comm. ACM, 1973, 16, 575–576.
81. Samudrala, R. and Moult, J., A graph-theoretic algorithm for comparative modeling of
protein structure. J. Mol. Biol., 1998, 279, 287–302.
82. Hahn, M. and Rogers, D., Receptor surface models. 2. Application to quantitative
structure–activity relationships studies. J. Med. Chem., 1995, 38, 2091–2102.
83. Hahn, M., Receptor surface models. 1. Definition and construction. J. Med. Chem., 1995,
38, 2080–2090.