graphitic islands to lift off the catalyst surface. Hence, encapsulation may easily be limited, which
enhances CNT growth, by maintaining elevated temperatures. Experimental results also show that
small catalyst nanoclusters (diameters <2 nm) are free of graphite encapsulation since they do not
contain a sufficient number of dissolved C atoms. However, for metal nanostructures >3nmin
diameter, calculations suggest that graphite encapsulation is thermodynamically preferred over
SWNT growth. This is confirmed by the empirical observation that SWNTs form only on catalyst
particles with diameters <2 nm.
218
For example, see: (a) Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. -L. Nano
Lett. 2006, 6, 449. (b) Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Nano Lett.
2008, 8, 2082.
219
Ding, F.; Harutyunyan, A. R.; Yakobson, B. I. Proc. Nat’l Acad. Sci. 2009, 106, 2506.
220
Using field-emission microscopy (FEM) to observe axial rotation and preferential adsorption of
dimeric C
2
units during growth: Marchand, M.; Journet, C.; Guillot, D.; Benoit, J. -M.; Yakobson, B.
I.; Purcell, S. T. Nano Lett. 2009, 9, 2961.
221
Jin, S.; Bierman, M. J.; Morin, S. A. J. Phys. Chem. Lett. 2010, 1, 1472, and references therein.
222
Hofmann, S.; Sharma, R.; Ducati, C.; Du, G.; Mattevi, C.; Cepek, C.; Cantoro, M.; Pisana, S.;
Parvez, A.; Cervantes-Sodi, F.; Ferrari, A. C.; Dunin-Borkowski, R.; Lizzit, S.; Petaccia, L.;
Goldoni, A.; Robertson, J. Nano Lett. 2007, 602.
223
Lee, Y. H.; Kim, S. G.; Jund, P.; Tomanek, D. Phys. Rev. Lett. 1997, 78, 2393.
224
A recent paper by Hata et al. discusses the variables that govern highly-efficient carbon nanotube
growth – an oxygen-containing “growth enhancer” (e.g., water, alcohols), and a carbon source not
containing oxygen: Futaba, D. N.; Goto, J.; Yasuda, S.; Yamada, T.; Yumura, M.; Hata, K. Adv.
Mater. 2009, 21, 4811.
225
Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362.
226
Rummeli, M. H.; Borowiak-Palen, E.; Gemming, T.; Pichler, T.; Knupfer, M.; Kalbac, M.; Dunsch,
L.; Jost, O.; Silva, S. R. P.; Pompe, W.; Buchner, B. Nano Lett. 2005, 5, 1209.
227
(a) For a recent review of inorganic-based nanotubes, see: Goldberger, J.; Fan, R.; Yang, P. Acc.
Chem. Res. 2006, 39, 239, and references therein. (b) Mukherjee, S. Synthesis, Characterization and
Growth Mechanism of Single-Walled Metal Oxide Nanotubes, Ph.D. Dissertation (Chem. Eng.),
Georgia Institute of Technology, August 2007. May be accessed online at: http://etd.gatech.edu/
theses/available/etd-06302007-202542/unrestricted/mukherjee_sanjoy_200708_phd.pdf
228
Lu, J. G.; Chang, P. C.; Fan, Z. Y. Mater. Sci. Eng. Rep. 2006, 52, 49.
229
Hulteen, J. C.; Martin, C. R. J. Mater. Chem. 1997, 7, 1075.
230
For example, see: (a) Wang, J. M.; Gao, L. J. Mater. Chem. 2003, 13, 2551. (b) Liu, B.; Zeng, H. C.
J. Am. Chem. Soc. 2003, 125, 4430.
231
Mukherjee, S.; Bartlow, V. M.; Nair, S. Chem. Mater. 2005, 17, 4900.
232
(a) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737, and references therein. (b) Bang, J. H.; Kamat,
P. V. ACS Nano 2009, 3, 1467. (c) Farrow, B.; Kamat, P. V. J. Am. Chem. Soc. 2009, 131, 11124.
233
(a) Baker, D. R.; Kamat, P. V. J. Phys. Chem. C 2009, 113, 17967. (b) Yu, P.; Zhu, K.; Norman, A.
G.; Ferrere, S.; Frank, A. J.; Nozik, A. J. J. Phys. Chem. B 2006, 110, 25451. (c) Wen, X.; Junchao,
T.; Sun, Y.; Sun, Y.; Dai, N. Proc. SPIE 2009, 7381, 73810Z.
234
(a) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.;
Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.(b) Novoselov, K. S.; Jiang, D.; Schedin,
F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U.S.A. 2005,
102, 10451.
235
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.;
Dubonos, S. V.; Firsov, A. A Nature 2005, 438, 197.
236
Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov,
A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Science 2006, 312, 1191.
237
Graphite intercalation compounds and applications, Endo, M., Ed.; Oxford University Press:
Oxford, U.K., 2003.
References 579