Назад
428 Appendix E: Electron Wavelengths, Relativistic Factors, and Physical Constants
Table E.1 Electron parameters as a function of kinetic energy
E
0
(keV) λ (pm)
k
0
= 2π/λ
(nm
1
) v
2
/c
2
γ
T = m
0
v
2
/2
(keV)
2γ T
(keV)
10 12.2 514.7 0.0380 1.0196 9.714 19.81
20 8.59 731.4 0.0739 1.0391 18.88 39.34
30 6.98 900.2 0.1078 1.0587 27.55 58.34
40 6.02 1044 0.1399 1.0782 35.75 77.10
50 5.36 1173 0.1703 1.0978 43.52 95.56
60 4.87 1291 0.1991 1.1174 50.88 113.7
80 4.18 1504 0.2523 1.1565 64.50 149.2
100 3.70 1697 0.3005 1.1957 76.79 183.6
120 3.35 1876 0.3442 1.2348 87.94 217.2
150 2.96 2125 0.4023 1.2935 102.8 266.0
200 2.51 2505 0.4835 1.3914 123.6 343.8
300 1.97 3191 0.6030 1.5870 154.1 489.1
400 1.64 3822 0.6854 1.7827 175.1 624.4
500 1.42 4421 0.7445 1.9784 190.2 752.8
1000 0.87 7205 0.8856 2.9567 226.3 1338
Table E.2 Selected physical constants
Quantity Symbol Value Units
Electron charge e 1.602 × 10
19
C
Electron rest mass m
0
9.110 × 10
31
kg
Electron rest energy m
0
c
2
511.00 eV
Atomic mass unit (1/N
A
) u 1.661 × 10
27
kg
Bohr radius (4πε
0
2
(m
0
e
2
)
1
) a
0
5.292 × 10
11
m
Rydberg energy (h
2
(2m
0
a
0
2
)
1
) R 13.61 eV
Photon energy × wavelength hc/e 1.240 eV μm
Avogadro number N
A
6.022 × 10
23
mol
1
Boltzmann constant k 1.381 × 10
23
JK
1
Speed of light in vacuum c 2.998 × 10
8
ms
1
Permittivity of space ε
0
8.854 × 10
12
Fm
1
Permeability of space μ
0
1.257 × 10
6
Hm
1
Planck constant h 6.626 × 10
34
Js
h/2π
1.055 × 10
34
Js
1 mmol/kg 12 ppm (atomic) for dry biological tissue (assuming mean Z 6)
1 mmol/kg 1mM 18 ppm (atomic) for wet biological tissue (mainly H
2
O)
Appendix F
Options for Energy-Loss Data Acquisition
Table F.1 summarizes some of the procedural choices involved in the recording of
energy-loss data. As discussed on p. 291, there are several ways of using the infor-
mation contained in inelastic scattering. An energy-loss spectrum provides much
quantitative information, such as the local thickness (p. 293), chemical composition
(p. 269, 324), and the crystallographic and electronic structure (Section 5.6)ofa
defined region of the specimen. Energy-filtered imaging is more useful for show-
ing variations in thickness, composition or bonding, or simply for optimizing the
contrast arising from structural features ( Section 5.3). A spectrum image (p. 103)
combines the spatial and energy-loss information and allows sophisticated proce-
dures such as multivariate statistical analysis (p. 265) to be applied to previously
acquired data. Energy-filtered diffraction can be useful for the quantitative interpre-
tation of diffraction patterns (p. 317), for examining the directionality of chemical
bonding (Fig. 3.60) or for finding out which scattering processes contribute to the
energy-loss spectrum of a particular specimen (Section 3.3).
The three basic types of TEM-EELS systems were described earlier (Fig. 2.30).
A spectrometer mounted beneath a TEM column is the most common choice for
acquiring energy-loss spectra; the Gatan GIF system also provides energy-filtered
images and diffraction patterns. An in-column filter has the advantage that an
energy-filtered image can appear on the large fluorescent screen of the TEM, in
addition to a CCD monitor. Spectroscopy and spectrum imaging are possible, but
the latter is less dose efficient than the equivalent STEM technique (p. 106) and
extracting a spectrum with good energy resolution may require specimen-drift cor-
rection and interpolation (p. 104). The relative advantages of the TEM and STEM
for acquiring energy-filtered images and spectrum image data are discussed in
Section 2.6.5.
High accelerating voltage maximizes the beam current available in a small probe
and makes it easier to obtain good spatial resolution, although aberration correc-
tors relax this requirement. Since high incident energy E
0
is equivalent (in terms
of the amount of scattering) to a thinner specimen, the signal/background ratio at
ionization edges is improved, reducing the need for deconvolution and making quan-
titative analysis more feasible. Low E
0
increases the intensity of inelastic scattering
relative to the zero-loss peak, reducing the deleterious effect of its tail on low-loss
429
R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope,
DOI 10.1007/978-1-4419-9583-4_11,
C
Springer Science+Business Media, LLC 2011
430 Appendix F: Options for Energy-Loss Data Acquisition
Table F.1 Options involved in the acquisition of energy-loss data
Parameter Options Main advantages
Type of data Energy-loss spectrum
Energy-filtered image
Spectrum image
Energy-filtered DP
Quantitative data from a defined area
Spatial distribution, at least qualitative
Large information content
Reveals physical processes
Type of
instrumentation
Spectrometer below TEM
In-column filter
Dedicated STEM
Convenient for spectroscopy
Convenient for EFTEM
Ideal for spectrum imaging
Incident energy High (e.g., 200 keV)
Low (e.g., 60 keV)
Ionization edges more visible
Reduced damage and
ˇ
Cerenkov effects
TEM mode Image on TEM screen
DP on TEM screen
Easy spatial location of spectrum
More precise spatial determination
Collection angle β <10mrad
β > 100 mrad
Dipole conditions, high edge jump ratio
Good for E > 1 keV and log ratio method
Energy dispersion dE/dx > 1 eV/channel
dE/dx < 0.1 eV/channel
Good for high energy losses
Improves low-loss energy resolution
Recording time Short
Long
Less drift, less radiation damage
Lower shot noise, better statistics
Number of
readouts
Small
Large
Low readout noise
Large dynamic range, drift correction
spectroscopy (e.g., bandgap measurement, p. 368). Lower voltage also reduces any
ˇ
Cerenkov contribution below 5 eV (p. 154, 369) and reduces possible knock-on
damage (atomic displacement or sputtering from surfaces), even if E
0
exceeds the
threshold energy.
In the case of a below-column spectrometer, TEM image mode (p. 63) makes it
easy to see what region of a specimen is giving rise to the energy-loss spectrum, sim-
ply by lowering the viewing s creen. However, aberrations of the imaging lenses may
preclude precise spatial localization (p. 64), whereas TEM diffraction mode allows
regions of diameter down to 1 nm (or even below) to be defined by means of a very
small probe. Alternatively, diffraction mode with a large-diameter beam provides
high spectral intensity (useful for core-loss spectroscopy) because the spectrum
contains contributions from the entire beam area, not limited by the spectrome-
ter entrance aperture (Fig. 2.16). In diffraction mode, the center of the diffraction
pattern must be aligned to the center of the spectrometer entrance aperture, usually
by manual adjustment for maximum intensity (p. 64).
The spectrum collection semi-angle β is determined by a TEM objective aperture
or, in diffraction mode or a dedicated STEM, by a spectrometer entrance aperture.
Small β increases the signal/background ratio at an ionization edge and allows the
use of dipole formulas (necessary when measuring thickness using the Kramers–
Kronig sum rule, for example; p. 302). Large β simplifies thickness measurement
Appendix F: Options for Energy-Loss Data Acquisition 431
by the log ratio method (p. 301) and is useful for ionization edges above 1 keV, to
obtain adequate intensity.
Long recording time of the spectrum minimizes statistical (shot) noise, of prime
importance for recording ionization edges. One limit comes from saturation of the
electron detector, which typically limits the time to fractions of a second in the low-
loss region, especially if the zero-loss peak is included. This limit can be extended
by combining multiple readouts (p. 93), possibly at the expense of readout noise
(p. 91, 95). Multiple readouts also allow correction for energy drift arising from
change in accelerating voltage or spectrometer current, the data-acquisition com-
puter being programed to recognize and align some prominent spectral feature.
Another time limit comes from specimen drift, which sometimes can also be com-
pensated electronically. A more fundamental limit arises from radiation damage,
whose severity depends very much on the type of specimen (p. 389). Damage in con-
ducting samples (e.g., metals) arises from knock-on processes and can be reduced
by lowering the incident energy, ideally below some damage threshold (p. 122, 396).
Damage in organic and inorganic compounds is usually due to radiolysis, and can
be reduced by a modest factor (e.g., 3) by cooling the specimen.
References
In the case of entries with the same surname, single-author papers are listed first
(with initials in alphabetical order), followed by t wo-author papers (alphabetic by
second author surname), and followed by multiauthor papers (et al. in the text) listed
chronologically.
Achèche, M., Colliex, C., and Trebbia, P. (1986) EELS characterization of small metallic clusters.
In Scanning Electron Microscopy/1986/I, ed. O. Johari, SEM Inc., Chicago, IL, pp. 25–32.
Adamson-Sharpe, K. M., and Ottensmeyer, F. P. (1981) Spatial resolution and detection sensitivity
in microanalysis by electron energy-loss selected imaging. J. Microsc. 122, 309–314.
Ade, H., Zhang, X., Cameron, S., Costello, C., Kirz, J., and Williams, S. (1992) Chemical contrast
in x-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. Science
258, 972–975.
Ahn, C. C., ed. (2004) Transmission Electron Energy Loss Spectrometry in Materials Science and
the EELS Atlas,Wiley,NewYork,NY.
Ahn, C. C., and Krivanek, O. L. (1983) EELS Atlas, Arizona State University and Gatan Inc.,
Tempe, AZ
Alexander, D. T. L., Crozier, P. A., and Anderson, J. R. (2008) Brown carbon spheres in east Asian
outflow and their optical properties. Science 321, 833–836.
Andersen, W. H. J. (1967) Optimum adjustment and correction of the Wien filter. Br. J. Appl. Phys.
18, 1573–1579.
Andersen, W. H. J., and Kramer, J. (1972) A double-focusing Wien filter as a full-image energy
analyzer for the electron microscope. In Electron Microscopy 1972, The Institute of Physics,
London, pp. 146–147.
Andersen, W. H. J., and Le Poole, J. B. (1970) A double Wien filter as a high resolution, high-
transmission electron energy analyser. J. Phys. E (Sci. Instrum.) 3, 121–126.
Andrew, J. W., Ottensmeyer, F. P., and Martell, E. (1978) An improved magnetic prism design for a
transmission electron microscope energy filter. In Electron Microscopy 1978, 9th Int. Cong.,
ed. J. M. Sturgess, Microscopical Society of Canada, Toronto, Vol. 1, pp. 40–41.
Ankudinov, A. L., Ravel, B., Rehr, J. J., and Conradson, S. D. (1998) Real-space multiple-
scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B
58, 7565–7576.
Anstis, G. R., Lynch, D. F., Moodie, A. F., and O’Keefe, M. A. (1973) Comparison of simulation
methods for electronic structure calculations with experimental electron energy-loss spectra.
Acta Crystallogr. A29, 138–152.
Arenal, R., de la Peña, F., Stéphan, O., Walls, M., Tencé, M., Loiseau, A., and Colliex, C. (2008)
Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in
complex nanostructures. Ultramicroscopy 109, 32–38.
433
R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope,
DOI 10.1007/978-1-4419-9583-4,
C
Springer Science+Business Media, LLC 2011
434 References
Aronova, M. A., Kim, Y. C., Pivovarova, N. B., Andrews, S. B., and Leapman, R. D. (2009)
Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in
complex nanostructures. Ultramicroscopy 109, 201–212.
Arsenault, A. L., and Ottensmeyer, F. P. (1983) Quantitative spatial distribution of calcium, phos-
phorus and sulfur in calcifying epiphysis by high resolution spectroscopic imaging. Proc. Natl.
Acad. Sci. USA 80, 1322–1326.
Arslan, I., Ogut, S., Nellist, P. D., and Browning, N. D. (2003) Comparison of simulation methods
for electronic structure calculations with experimental electron energy-loss spectra. Micron 34,
255–260.
Ashley, J. C., and Ritchie, R. H. (1970) Double-plasmon excitation in a free-electron gas. Phys.
Status Solidi 38, 425–434.
Ashley, J. C., and Williams, M. W. (1980) Electron mean free paths in solid organic insulators.
Radiat. Res. 81, 364–378.
Atwater, H. A., Wong, S. S., Ahn, C. C., Nikzad, S., and Frase, H. N. (1993) Analysis of monolayer
films during molecular beam epitaxy by reflection electron energy loss spectroscopy. Surf. Sci.
298, 273–283.
Auchterlonie, G. J., McKenzie, D. R., and Cockayne, D. J. H. (1989) Using ELNES with parallel
EELS for differentiating between a-Si:X thin films. Ultramicroscopy 31, 217–232.
Auerhammer, J. M., and Rez, P. (1989) Dipole-forbidden excitations in electron-energy-loss
spectroscopy. Phys. Rev. B 40, 2024–2030.
Autrata, R., Schauer, P., Kvapil, Jos., and Kvapil, J. (1983) Single-crystal aluminates a new
generation of scintillators for scanning microscopes and transparent screens in electron optical
devices. In Scanning Electron Microscopy/1983/II, eds. G. M. Roomans, R. M. Albrecht, J. D.
Shelburne, and I. B. Sachs, Scanning Electron Microscopy Inc., Chicago, IL, pp. 489–500.
Bach, F. R., and Jordan, M. I. (2002) Kernel independent component analysis. J. Mach. Learn. Res.
3, 1–48.
Bakenfelder, A., Fromm, I., Reimer, L., and Rennenkamp, R. (1989) Contrast in the electron spec-
troscopic imaging mode of a TEM. III. Bragg contrast of crystalline specimens. J. Microsc.
159, 161–177.
Baker, T. N., Craven, A. J., Duckworth, S. P., and Glas, F. (1982) Microanalysis of carbides in
ferritic steels. In Developments in Electron Microscopy and Analysis, ed. P. Doig, Inst. Phys.
Conf. Ser. No. 61, I.O.P., Bristol, pp. 239–242.
Ball, M. D., Malis, T. F., and Steele, D. (1984) Ultramicrotomy as a specimen preparation tech-
nique for analytical electron microscopy. In Analytical Electron Microscopy 1984,eds.D.B.
Williams and D. C. Joy, San Francisco Press, San Francisco, CA, pp. 189–192.
Ballu, Y., Lecante, J., and Newns, D. M. (1976) Surface plasmons on Mo(100). Phys. Lett. 57A,
159–160.
Bangert, U., Harvey, A. J., Fruendt, D., and Keyse, R. (1997) Highly spatially resolved electron
energy-loss spectroscoy in the bandgap region of GaN. J. Microsc. 188, 237–242.
Bangert, U., Eberlein, T., Nair, R.R., Jones, R., Gass, M., Bleloch, A.L., Novoselov, K.S., Geim, A.
and Briddon, P.R. (2008) STEM plasmon spectroscopy of free standing graphen. Phys. Status
Solidi 205, 2265–2269.
Banhart, F. (1999) Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221.
Barfels, M. M. G., Jiang, X., Heng, Y. M., Arsenault, A. L., and Ottensmeyer, F. P. (1998) Low
energy loss electron microscopy of chromophores. Micron 29, 97–104.
Barth, J., Gerken, F., and Kunz, C. (1983) Atomic nature of the L
23
white lines in Ca, Sc and Ti
metals as revealed by resonant photoemission. Phys.Rev.B28, 3608–3611.
Barwick, B., Flannigan, D. J., and Zewail, A. H. (2009) Photon-induced near-field electron
microscopy. Nature 462, 902–906.
Batson, P. E. (1982) A new surface plasmon resonance in clusters of small aluminum spheres.
Ultramicroscopy 9, 277–282.
Batson, P. E. (1985) A Wien filter ELS spectrometer for dedicated STEM. In Scanning Electron
Microscopy, ed. O. Johari, SEM Inc., Illinois, Part 1, pp. 15–20.
References 435
Batson, P. E. (1988) Parallel detection for high-resolution electron energy loss studies in the
scanning transmission electron microscope. Rev. Sci. Instrum. 59, 1132–1138.
Batson, P. E. (1992a) Electron energy loss studies in semiconductors. In Transmission Electron
Energy Loss Spectrometry in Materials Science,eds.M.M.Disko,C.C.Ahn,andB.Fulz,The
Minerals, Metals and Materials Society, Warrendale, PA, pp. 217–240.
Batson, P. E. (1992b) Spatial resolution in electron energy loss spectroscopy. Ultramicroscopy 47,
133–144.
Batson, P. E. (1993a) Simultaneous STEM imaging and electron energy-loss spectroscopy with
atomic column sensitivity. Nature 366, 727–728.
Batson, P. E. (1993b) Distortion of t he core exciton by the swift electron and plasmon wake in
spatially resolved electron-energy-loss scattering. Phys. Rev. B 47, 6898–6910.
Batson, P. E. (1993c) Silicon L
23
near-edge fine structure in confined volumes. Ultramicroscopy
50, 1–12.
Batson, P. E. (1995) Conduction bandstructure in strained silicon by spatially resolved electron
energy loss spectroscopy. Ultramicroscopy 59, 63–70.
Batson, P. E., and Bruley, J. (1991) Dynamic screening of the core exciton by swift electrons in
electron-energy-loss scattering. Phys. Rev. Lett. 67, 350–353.
Batson, P. E., and Craven, A. J. (1979) Extended fine structure on the carbon core-ionization edge
obtained from nanometer-sized areas with electron energy-loss spectroscopy. Phys. Rev. Lett.
42, 893–897.
Batson, P. E., and Silcox, J. (1983) Experimental energy-loss function, Im[1/ε(q,ω)],
for aluminum. Phys.Rev.B27, 5224–5239.
Batson, P. E., Silcox, J., and Vincent R. (1971) Computer control of energy analysis in an elec-
tron microscope. In 29th Ann. Proc. Electron Microsc. Soc. Am., ed. G. W. Bailey, Claitor’s
Publishing, Baton Rouge, LA, pp. 30–31.
Batson, P. E., Pennycook, S. J., and Jones, L. G. P. (1981) A new technique for t he scanning and
absolute calibration of electron energy-loss spectra. Ultramicroscopy 6, 287–289.
Batson, P. E., Kavanagh, K. L., Woodall, J. M., and Mayer, J. W. (1986) Electron-energy-loss
scattering near a single misfit dislocation at the GaAs/GaInAs interface. Phys.Rev.Lett. 57,
2729–2732.
Batson, P. E., Chisholm, M. F., Clarke, D. R., Dimos, D., and Shaw, T. (1989) Energy-loss studies
of carbon content in yttrium barium cuprate. In Proc. 47th Ann. Meet. Electr. Microsc. Soc.
Am., ed. G. W. Bailey, San Francisco Press, San Francisco, CA, pp. 196–197.
Batson, P. E., Johnson, D. W., and Spence, J. C. H. (1992) Resolution enhancement by deconvo-
lution using a field emission source in electron energy loss spectroscopy. Ultramicroscopy 41,
137–145.
Batson P.E., Mook H.W., and Kruit, P. (2000) High brightness monochromator for STEM. In
International Union of Microbeam Analysis 2000, eds. D. B. Williams and R. Shimizu, Institute
of Physics, Bristol, pp. 165, 213–214.
Batson, P. E., Mook, H. W., Kruit, P., Krivanek, O. L., and Delby, N. (2001) Progress with the IBM
very high resolution STEM. Microsc. Microanal. 7 (Suppl. 2), 234–235.
Bauer, R., Hezel, U., and Kurz, D. (1987) High resolution imaging of thick biological specimens
with an imaging electron energy loss spectrometer. Optik 77, 171–174.
Baumann, W., Niemietz, A., Reimer, L., and Volbert, B. (1981) Preparation of P-47 scintillators
for STEM. J. Microsc. 122, 181–186.
Baumeister, W., and Hahn, M. (1976) An improved method for preparing single-crystal specimen
supports: H
2
O
2
exfoliation of vermiculite. Micron 7, 247–251.
Bazett-Jones, D. P., and Ottensmeyer, F. P. (1981) Phosphorus distribution in the nucleosome.
Science 211, 169–170.
Beamson, G., Porter, H. Q., and Turner, D. W. (1981) Photoelectron spectromicroscopy. Nature
290, 556–561.
Bearden, J. A., and Burr, A. F. (1967) X-ray atomic energy levels. Rev. Mod. Phys. 39,
125–142.
436 References
Bell, A. E., and Swanson, L. W. (1979) Total energy distributions of field-emitted electrons at high
current density. Phys. Rev. B 19, 3353–3364.
Bell, M. G., and Liang, W. Y. (1976) Electron energy loss studies in solids; the transition metal
dichalcogenides. Adv. Phys. 25, 53–86.
Bendayan, M., Barth, R. F., Gingras, D., Londono, I., R obinson, P. T., Alam, F., Adams, D. M., and
Mattiazzi, L. (1989) Electron spectroscopic imaging for high-resolution immunocytochemistry:
Use of boronated protein A. J. Histochem. Cytochem. 37, 573–580.
Bennett, J. C., and Egerton, R. F. (1995) NiO test specimens for analytical electron microscopy:
Round-robin results. J. Microsc. Soc. Am. 1, 143–149.
Bentley, J. (1992) Applications of EELS to ceramics and catalysts. In Transmission Electron
Energy Loss Spectrometry in Materials Science,eds.M.M.Disko,C.C.Ahn,andB.Fulz,
The Minerals, Metals and Materials Society, Warrendale, PA, pp. 155–181.
Bentley, J., Angelini, P., and Sklad, P. S. (1984) Secondary fluorescence effects on x-ray micro-
analysis. In Analytical Electron Microscopy 1984,eds.D.B.WilliamsandD.C.Joy,San
Francisco Press, San Francisco, CA, pp. 315–317.
Berger, A., and Kohl, H. (1993) Optimum imaging parameters for elemental mapping in an energy
filtering transmission electron microscope. Optik 92, 175–193.
Berger, S. D., and McMullan, D. (1989) Parallel recording for an electron spectrometer on a
scanning transmission electron microscope. Ultramicroscopy 28, 122–125.
Berger, M. J., and Seltzer, S. M. (1982) Stopping powers and ranges of electrons and positrons.
National Bureau of Standards report: NBSIR 82-2550, U.S. Dept. of Commerce, Washington,
DC, 162 p.
Berger, S. D., Salisbury, I. G., Milne, R. H., Imeson, D., and Humphreys, C. J. (1987) Electron
energy-loss spectroscopy studies of nanometre-scale structures in alumina produced by intense
electron-beam irradiation. Philos. Mag. B 55, 341–358.
Berger, S. D., McKenzie, D. R., and Martin, P. J. (1988) EELS analysis of vacuum arcdeposited
diamond-like films. Philos. Mag. Lett. 57, 285–290.
Bertsch, G.F., Esbensen, H. and Reed, B.W. (1998) Electron energy-loss spectrum of nanowires.
Phys. Rev. B 58, 14031–14035.
Bertoni, G., and Verbeeck, J. (2008) Accuracy and precision in model based EELS quantification.
Phys. Rev. B 58, 14031–14035.
Bethe, H. (1930) Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann.
Phys. (Leipzig) 5, 325–400.
Bevington, P. R. (1969) Data Reduction and Error Analysis for the Physical Sciences, McGraw-
Hill, New York, NY.
Bianconi, A. (1983) XANES spectroscopy for local structures in complex systems. In EXAFS and
Near Edge Structure, eds. A. Bianconi, L. Incoccia, and S. Stipcich, Springer, New York, NY,
pp. 118–129.
Bianconi, A., Dell’Ariccia, M., Durham, P. J., and Pendry, P. J. (1982) Multiple scattering res-
onances and structural effects in the x-ray absorption near edge spectra of Fe II and Fe III
hexacyanide complexes. Phys.Rev.B26, 6502–6508.
Bianconi, A., Dell’Ariccia, M., Gargano, A., and Natoli, C. R. (1983a) Bond length determination
using XANES. In EXAFS and Near Edge Structure, eds. A. Bianconi, L. Incoccia, and S.
Stipcich, Springer, New York, NY, pp. 57–61.
Bianconi, A., Giovannelli, A., Ascone, I., Alema, S., Durham, P., and Fasella, P. (1983b) XANES
of calmodulin: Differences and homologies between calcium-modulated proteins. In EXAFS
and Near Edge Structure, eds. A. Bianconi, L. Incoccia, and S. Stipcich, Springer, New York,
NY, pp. 355–357.
Bihr, J., Benner, G., Krahl, D., Rilk, A., and Weimer, E. (1991) Design of an analytical TEM with
integrated imaging
-spectrometer. In Proc. 49th Ann. Meet. Electron Microsc. Soc. Am., ed.
G. W. Bailey, San Francisco Press, San Francisco, CA, pp. 354–355.
Blackstock, A. W., Birkhoff, R. D., and Slater, M. (1955) Electron accelerator and high resolution
analyser. Rev. Sci. Instrum. 26, 274–275.
References 437
Blaha, P., and Schwarz, K. (1983) Electron densities in TiC, TiN, and TiO derived from energy
band calculations. Int. J. Quantum Chem. 23, 1535–1552.
Blaha, P., Schwarz, K., and Sorantin, P. (1990) Full-potential, linearized augmented plane wave
programs for crystalline systems. Comput. Phys. Commun. 59, 399–415.
Blake, D., Freund, F., Krishnan, K. F. M., Echer, C. J., Shipp, R., B unch, T. E., Tielens, A. G.,
Lipari, R. J., Hetherington, C. J. D., and Chang, S. (1988) The nature and origin of interstellar
diamond. Nature 332, 611–613.
Blanche, G., Hug, G., Jaouen, M., and Flank, A. M. (1993) Comparison of the TiK extended fine
structure obtained from electron energy loss spectroscopy and x-ray absorption spectroscopy.
Ultramicroscopy 50, 141–145.
Blasse, G., and Bril, A. (1967) A new phosphor for flying-spot cathode-ray tubes for color
television: Yellow-emitting Y
3
Al
5
O
12
-Ce
3+
. Appl. Phys. Lett. 11, 53–54.
Boersch, H. (1954) Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten
Elektronenstrahlen. Z. Phys. 139, 115–146.
Boersch, H., Geiger, J., and Hellwig, H. (1962) Steigerung der Auflösung bei der Elektronen-
Energieanalyse. Phys. Lett. 3, 64–66.
Boersch, H., Geiger, J., and Stickel, W. (1964) Das Auflösungsvermögen des elektrostatisch-
magnetischen Energieanalysators für schnelle Elektronen. Z. Phys. 180, 415–424.
Bohm, D., and Pines, D. (1951) A collective description of electron interactions: II. Collective vs.
individual particle aspects of the interactions. Phys. Rev. 85, 338–353.
Böhmer, J., and Rahmann, H. (1990) Ultrastructural localization of aluminum in amphibian larvae.
Ultramicroscopy 32, 18–25.
Bohr, N. (1913) On the constitution of atoms and molecules. Philos. Mag. 25, 1–25.
Bolton, J. P. R., and Chen, M. (1995a) Electron energy loss in multilayered slabs: I. Normal
incidence. J. Phys. C 7, 3373–3387.
Bolton, J. P. R., and Chen, M. (1995b) Electron energy loss in multilayered slabs: II. Parallel
incidence. J. Phys. C 7, 3389–3403.
Bolton, J. P. R., and Chen, M. (1995c) Electron energy loss in multilayered slabs: III. Anisotropic
media. J. Phys. C 7, 3405–3419.
Bonham, R. A., and Fink, M. (1974) High Energy Electron Scattering, Van Nostrand Reinhold,
New York, NY.
Bonnet, R. A., and Nuzillard, D. (2005) Independent component analysis: A new possibility for
analysing series of electron energy loss spectra. Ultramicroscopy 102, 327–337.
Bonney, L. A. (1990) Measurement of the inelastic mean free path by EELS analyses of submicron
spheres. In Proc. XIIth Int. Cong. Electron Microsc., San Francisco Press, San Francisco, CA,
pp. 74–75.
Boothroyd, C. B., Sato, K., and Yamada, K. (1990) The detection of 0.5 at% boron in Ni
3
Al using
parallel energy loss spectroscopy. In Proc. XIIth Int. Cong. Electron Microsc., San Francisco
Press, San Francisco, CA, Vol. 2, pp. 80–81.
Borglund, M., Åstrand, P.-G., and Csillag, S. (2005) Improved background removal method
using principal components analysis for spatially resolved electron energy loss spectroscopy.
Microsc. Microanal. 11, 88–96.
Born, M., and Wolf, E. (2001) Principles of Optics , 7th edition, Cambridge University Press,
Cambridge, p. 471.
Bosman, M., and Keast, V. J. (2008) Optimizing EELS acquisition. Ultramicroscopy 108, 837–846.
Bosman, M., Watanabe, M., Alexander, D.T.L. and Keast, V.J. (2006) Mapping chemical and
bonding information using multivariate analysis of electron energy-loss spectrum images.
Ultramicroscopy 106, 1024–1032.
Bosman, M., Tang, L. J., Ye, J. D., Tan, S. T., Zhang, Y., and Keast, V. J. (2009) Nanoscale band gap
spectroscopy on ZnO and GaN-based compounds with a monochromated electron microscope.
Appl. Phys. Lett. 95, 101110 (3 pages).
Botton, G. A. (2005) A new approach to study bonding anisotropy with EELS. J. Electron
Spectrosc. Relat. Phenom. 143, 129–137.