References 459
Krivanek, O. L., Mory, C., Tence, M., and Colliex, C. (1991a) EELS quantification near the single-
atom detection level. Microsc. Microanal. Microstruct. 2, 257–267.
Krivanek, O. L., Gubbens, A. J., and Dellby, N. (1991b) Developments in EELS instrumentation
for spectroscopy and imaging. Microsc. Microanal. Microstruct. 2, 315–332.
Krivanek, O. L., Gubbens, A. J., Dellby, N., and Meyer, C. E. (1992) Design and first applications
of a post-column imaging filter. Microsc. Microanal. Microstruct. 3, 187–199.
Krivanek, O. L., Kundmann, M., and Bourrat, X. (1994) Elemental mapping by energy-filtered
electron microscopy. In Mater. Res. Soc. Symp. Proc., Materials Research Society, Pittsburgh,
PA, Vol. 332, pp. 341–350.
Krivanek, O. L., Friedman, S. L., Gubbens, A. J., and Kraus, B. (1995) A post-column imaging
filter for biological applications. Ultramicroscopy 59, 267–282.
Krivanek,O.L.,Corbin,G.J.,Dellby,N.,Elston,B.F.,Keyse,R.J.,Murfitt,M.F.,Own,C.S.,
Szilagyi, Z. S., and Woodruff, J. W. (2008) An electron microscope for the aberration-corrected
era. Ultramicroscopy 108,179–195.
Krivanek, O. L., Ursin, J. P., Bacon, N. J., Corbin, G. J., Dellby, N., Hrncirik, P., Murfitt,
M. F., Own, C. S., and Szilagyi, Z. S. (2009) High-energy-resolution monochromator for
aberration-corrected scanning transmission electron microscopy/electron energy-loss spec-
troscopy. Philos. Trans. R. Soc. 367, 3683–3697.
Krivanek, O. L., Chisholm, M. F., Nicolosi, V., Pennycook, T. J., Corbin, G. J., Dellby, N., Murfitt,
M. F., Own, C. S., Szilagyi, Z. S., Oxley, M. P., Pantelides, S. T., and Pennycook, S. J. (2010)
Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy.
Nature 464, 571–574.
Kröger, E. (1968) Berechnung der Energieverluste schneller elektronen in dünnen Schichten mit
Retardierung. Z. Phys. 216, 115–135.
Kröger, E. (1970) Transition radiation, Cerenkov radiation and energy losses of relativistic charged
particles traversing thin foils at oblique incidence. Z. Phys. 235, 403–421.
Kruit, P., a nd Shuman, H. (1985a) The influence of objective lens aberrations in energy-loss
spectrometry. Ultramicroscopy 17, 263–267.
Kruit, P., and Shuman, H. (1985b) Position stabilization of EELS spectra. J. Electron Microsc.
Tech. 2, 167–169.
Kruit, P., Shuman, H., and Somlyo, A. P. (1984) Detection of x-rays and electron energy-loss events
in time coincidence. Ultramicroscopy 13, 205–214.
Kujiwa, S., and Krahl, D. (1992) Performance of a low-noise CCD camera adapted to a
transmission electron microscope. Ultramicroscopy 46, 395–403.
Kunz, B. (1964) Messung der unsymmetrischen Winkelverteilung der charakteristischen
Oberfläcvhenverluste an Al (6.3 eV) und Ag (3.6 eV). Z. Phys. 180, 127–132.
Kurata, H., Isoda, S., and Kobayashi, T. (1992) EELS study of radiation damage i n chlorinated
Cu-phthalocyanine and poly GeO-phthalocyanine. Ultramicroscopy 41, 33–40.
Kurata, H., Wahlbring, P., Isoda, S., and Kobayashi, T. (1997) Importance of relativistic effect on
inelastic scattering cross sections for quantitative microanalsyis. Micron 28, 381–388.
Kutzler, F. W., Natoli, C. R., Misemer, D. K., Doniach, S., and Hodgson, K. O. (1980) Use of one-
electron theory for the interpretation of near-edge structure in K-shell x-ray absorption spectra
of transition-metal complexes.
J. Chem. Phys. 73, 3274–3288.
Kuzuo, R., Terauchi, M., Tanaka, M., Saito, Y., and Shinohara, H. (1991) High-resolution electron
energy-loss spectra of solid C
60
. Jpn. J. Appl. Phys. 30, L1817–L1818.
Kuzuo, R., Terauchi, M., Tanaka, M., Saito, Y., and Shinohara, H. (1994) Electron-energy-loss
spectra of crystalline C
84
. Phys. Rev. B 49, 5054–5057.
Lakner, H., Maywald, M., Balk, L. J., and Kubalek, E. (1992) Characterization of AlGaAs/GaAs
interfaces by EELS and high-resolution Z-contrast imaging in scanning transmission electron
microscopy (STEM). Surf. Interface Anal. 19, 374–378.
Lakner, H., Rafferty, B., and Brockt, G. (1999) Electronic structure analysis of (In,Ga,Al)N
heterostructures on the nanometre scale using EELS. J. Microsc. 194, 79–83.