x
t
+ [ln(tx) + 1] x
0
= 0, t, x > 0
(2t − y) dt + (2y − t) dy = 0, y(1) = 3;
(3t
2
+ y + 1) dt − (4y − t) dy = 0, y(1) = 0;
a
a
(ty
2
+ at
2
y) dt + (t + y)t
2
dy = 0;
(ye
2ty
+ t) dt + ate
2ty
dy = 0.
P dt+Q dy = 0
m(t, y) 6= 0
m(t, y) × [P (t, y) dt + Q(t, y) dy] = 0
m(t, y) 6= 0
m(t, y) = ( ty
2
)
−1
(y
2
+ ty) dt − t
2
dy = 0,
P m
0
y
− Qm
0
t
+ (P
y
− Q
t
)m = 0.
m(t, y)