Rydberg Collisions: Binary Encounter, Born and Impulse Approximations 56.8 Binary Encounter Approximation 855
where
κ = v
1
/v
0
,
λ = κ −(4κ)
−1
,
θ = π +2tan
−1
λ,
a = (1 +κ
2
)
−1
,
b = (1 +λ
2
)
−1
.
σ
E,P
dPdE=
64e
4
v
5
0
3v
2
1
P
4
×
$
E
P
−
P
2m
e
2
v
2
0
%
−3
dP dE ,
(56.235)
where
1
2
m
e
v
2
0
is the ionization energy of H(1s).
Scaling Laws. Given the binary encounter cross section
for ionization by protons of energy E
1
of an atom with
binding energy u
a
, the cross section for ionization of an
atom with different binding energy u
b
and scaled proton
energy E
1
can be determined to be [56.18]
σ
ion
E
1
, u
b
=
$
u
2
a
u
2
b
%
σ
ion
(E
1
, u
a
), (56.236)
E
1
= (u
b
/u
a
)E
1
, (56.237)
where σ
ion
(E, u) is the ionization cross section for re-
moval of a single electron from an atom with binding
energy u by impact with a proton with initial energy E.
Double Ionization. See [56.36] for binary encounter
cross section formulae for the direct double ionization
of two-electron atoms by electron impact.
Excitation. Excitation is generally less violent than
ionization and hence binary encounter theory is less
applicable. Binary encounter theory can be applied to ex-
change excitation transitions, e.g., e
−
+He(n
1
L) →e
−
+He(n
3
L), with the restriction of large incident electron
velocities. The cross section is
Q
ex
e
=
U
n+1
U
n
σ
E,ex
dE
=
πe
4
T
i
&
1
T
n+1
−
1
T
n
+
2
3
$
E
2
T
2
n+1
−
E
2
T
2
n
%'
,
(56.238)
valid for T ≥U
n+1
, with T
n
≡ T +U
i
−U
n
and T
n+1
≡
T +U
i
+U
n+1
,or
Q
ex
e
=
T
U
n
σ
E,ex
dE (56.239)
=
πe
4
T
i
&
1
U
i
−
1
T
n
+
2
3
$
E
2
U
2
i
−
E
2
T
2
n
%'
,
valid for U
n
≤ T ≤ U
n+1
. U
n
and U
n+1
denote the
excitation energies for levels n and n +1, respectively.
56.8.3 Classical Ionization Cross Section
Applying the classical energy-change cross section
result (56.69)ofGerjuoy [56.16] to the case of electron-
impact ionization yields the four cases [56.17]
σ
ion
(v
1
,v
2
) ∼
∆E
u
∆E
σ
eff
∆E
(v
1
,v
2
;m
1
/m
2
) d(∆E)
=
π
Z
1
Z
2
e
2
2
3v
2
1
v
2
$
−2v
3
2
(∆E)
2
−
6v
2
m
2
∆E
%
,
(56.240)
which is valid for 0 < ∆E < b,or
σ
ion
(
v
1
,v
2
)
=
π
Z
1
Z
2
e
2
2
3v
2
1
v
2
×
$
4
v
1
−2v
1
m
2
1
v
1
−v
1
2
+
4
v
2
−2v
2
m
2
2
v
2
−v
2
2
%
,
(56.241)
which is valid for b < ∆E < a,or
σ
ion
(
v
1
,v
2
)
=
π(Z
1
Z
2
e
2
)
2
3v
2
1
v
2
$
−2v
3
1
(∆E)
2
%
,
(56.242)
which is valid for ∆E > a,2m
2
v
2
> |m
1
−m
2
|v
1
,or
otherwise is zero for ∆E > a,2m
2
v
2
< |m
1
−m
2
|v
1
.
The limits ∆E
,u
to the ∆E integration in each of
the four cases is indicated in the appropriate validity
conditions. The constants a and b above are given by
a =
4m
1
m
2
(m
1
+m
2
)
2
E
1
−E
2
+
1
2
v
1
v
2
(m
1
−m
2
)
,
b =
4m
1
m
2
(m
1
+m
2
)
2
E
1
−E
2
−
1
2
v
1
v
2
(m
1
−m
2
)
.
The expressions above for σ
ion
(v
1
,v
2
) must be averaged
over the speed distribution of v
2
before comparison with
experiment. See [56.17] for explicit formulae for the
case of a delta function speed distribution.
Part D 56.8