752 Part D Scattering Theory
49.5.2 Multiple Passage
in Molecular Collisions
For molecular collsions, (49.74)and(49.75) apply as
well. However, the manifold of R to which a trajec-
tory Q(t) belongs now comprises 3N −5 (for a linear
arrangement of nuclei) or 3N −6 (for a nonlinear ar-
rangement) degrees of freedom, where N is the number
of atoms in the system. The approximation (49.77)is
called, in the context of inelastic molecular collisions,
the surface-hopping approximation [49.17, 18]. Each
time a trajectory reaches an NAR, it bifurcates, and the
system makes a hop from one PES to another with a cer-
tain probability. Keeping track of all the bifurcations
and associated probabilities, one calculates P
L
if
along
apathL made up of different portions of trajectories
running across different PES. Because of the compli-
cated sequence of nonadiabatic events leading from the
initial state to the final state, each P
L
if
is a complicated
function of different single passage transition probabil-
ities P
nm
, and survival probabilities 1 − P
nm
.Evenif
all P
nm
are known in analytical form, the calculation of
P
if
requires numerical computations to keep track of
individual nonadiabatic events [49.17].
The manifold R can be reduced in size if one treats
other degrees of freedom, besides electronic ones, on
the same footing. In this way one introduces adiabatic
vibronic (vibrational + electronic) states and adiabatic
vibronic PES, and considers nonadiabatic transitions
between them [49.19]. In the vibronic representation,
the formal theory remains the same; however its imple-
mentation is more difficult since there are many more
possibilities for trajectory branching. Finally, under cer-
tain conditions, one can use a fully adiabatic description
of all degrees of freedom save one – the intermolecular
distance R. This approach provides a basis for the statis-
tical adiabatic channel model (SACM)ofunimolecular
reactions [49.20] where the receding fragments are scat-
tered adiabatically in the exit channels after leaving the
region of a statistical complex.
For a latest review of the theory of molecular nona-
diabatic dynamics, see [49.21] and papers in [49.22].
References
49.1 R. B. Bernstein (Ed.): Atom-Molecule Collision The-
ory: A Guide for the Experimentalist (Plenum, New
York 1979)
49.2 E. E. Nikitin, S. Ya. Unamskii: Theory of Slow Atomic
Collisions (Springer, Berlin, Heidelberg 1984)
49.3 L. D. Landau, E. M. Lifshitz: Quantum Mechanics
(Pergamon, Oxford 1977)
49.4 L. D. Landau: Phys. Z. Sowjetunion 1, 88 (1932)
49.5 L. D. Landau: Phys. Z. Sowjetunion 2, 46 (1932)
49.6 C. Zener: Proc. Roy. Soc. 137, 396 (1932)
49.7 E. E. Nikitin: Discuss. Faraday Soc. 33, 14 (1962)
49.8 N. Rosen, C. Zener: Phys. Rev. 40,502(1932)
49.9 Yu. N. Demkov: Sov. Phys. JETP 18,138(1964)
49.10 E. I. Dashevskaya, E. E. Nikitin: Quasiclassical ap-
proximation in the theory of scattering of polarized
atoms. In: Atomic Physics Methods in Modern Re-
search, Lecture Notes in Physics, Vol. 499, ed. by
K. Jungmann, J. Kowalski, I. Reinhard, F. Träger
(Springer, Berlin, Heidelberg 1997) p. 185
49.11 H. Nakamura: Nonadiabatic Transition: Concepts,
Basic Theories and Applications (World Scientific,
Singapore 2002)
49.12 M. S. Child: Semiclassical Mechanics with Molecular
Applications (Clarendon, Oxford 1994)
49.13 S. F. C. O’Rourke, B. S. Nesbitt, D. S. F. Crothers: Adv.
Chem. Phys. 103, 217 (1998)
49.14 E. S. Medvedev, V. I. Osherov: Radiationless Tran-
sitions in Polyatomic Molecules (Springer, Berlin,
Heidelberg 1994)
49.15 E. C. G. Stückelberg: Helv. Phys. Acta 5,369
(1932)
49.16 W. H. Miller: Adv. Chem. Phys. 30, 77 (1975)
49.17 S. Chapman: Adv. Chem. Phys. 82, 423 (1992)
49.18 J. C. Tully: Nonadiabatic dynamics. In: Modern
Methods for Multidimensional Dynamics Compu-
tations in Chemistry, ed. by D. L. Thompson (World
Scientific, Singapore 1998) p. 34
49.19 V. Sidis: Adv. At. Opt. Phys. 26, 161 (1990)
49.20 M. Quack, J. Troe: Statistical adiabatic channel
models. In: Encyclopedia of Computational Chem-
istry, Vol. 4, ed. by P. v. R. Schleyer, N. L. Allinger,
T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schae-
fer III, P. R. Schreiner (Wiley, Chichester 1998)
p. 2708
49.21 A. W. Jasper, B. K. Kendrick, C. A. Mead, D. G. Truh-
lar: Non-Born–Oppenheimer chemistry: Potential
surfaces, couplings, and dynamics. In: Modern
Trends in Chemical Reaction Dynamics: Experiment
and Theory (Part I), ed. by X. Yang, K. Lui (World
Scientific, Singapore 2004) p. 329
49.22 A. Lagana, G. Lendvay (Eds.): Theory of Chemical
Reaction Dynamics (Kluwer, Dordrecht 2004)
Part D 49