Supplemental Reading 409
at x = 0 so that u = U
1
for y>0 and u = U
2
for y<0. The density may be
assumed constant and the appropriate Reynolds number is sufficiently large that the
shear layer is thin (in comparison to distance from the origin). Assume the static
pressures are the same in both halves of the flow at x = 0. Describe any ambiguities
or nonuniquenesses in a similarity formulation and how they may be resolved. In the
special case of small velocity difference, solve explicitly to first order in the smallness
parameter (velocity difference normalized by average velocity, say) and show where
the nonuniqueness enters.
13. Solve equation (10.99) subject to equation (10.100) asymptotically for small
velocity difference and obtain the result in the caption to Figure 10.36.
Literature Cited
Alston, T. M. and I. M. Cohen (1992). “Decay of a laminar shear layer.” Phys. Fluids A4: 2690–2699.
Bender, C. M. and S. A. Orszag (1978). Advanced Mathematical Methods for Scientists and Engineers.
New York: McGraw-Hill.
Falkner, V. W. and S. W. Skan (1931). “Solutions of the boundary layer equations.” Phil. Mag. (Ser. 7) 12:
865–896.
Gallo, W. F., J. G. Marvin, and A. V. Gnos (1970). “Nonsimilar nature of the laminar boundary layer.”
AIAA J. 8: 75–81.
Glauert, M. B. (1956). “The Wall Jet.” J. Fluid Mech. 1: 625–643.
Goldstein, S. (ed.). (1938). Modern Developments in Fluid Dynamics, London: Oxford University Press;
Reprinted by Dover, New York (1965).
Holstein, H. and T. Bohlen (1940). “Ein einfaches Verfahren zur Berechnung laminarer Reibungsschichten
die dem N
¨
aherungsverfahren von K. Pohlhausen gen¨ugen.” Lilienthal-Bericht. S. 10: 5–16.
Hwang, Din-Chih (2005). “Evolution of a laminar mixing layer.” Ph.D. dissertation, University of
Pennsylvania. Submitted for publication.
Klemp, J. B. and A. Acrivos (1972). “A note on the laminar mixing of two uniform parallel semi-infinite
streams.” Journal of Fluid Mechanics 55: 25–30.
Mehta, R. (1985). “Aerodynamics of sports balls.” Annual Review of Fluid Mechanics 17, 151–189.
Nayfeh, A. H. (1981). Introduction to Perturbation Techniques, New York: Wiley.
Peletier, L. A. (1972). “On the asymptotic behavior of velocity profiles in laminar boundary layers.” Arch.
for Rat. Mech. and Anal. 45: 110–119.
Pohlhausen, K. (1921). “Zur n
¨
aherungsweisen Integration der Differentialgleichung der laminaren
Grenzschicht.” Z. Angew. Math. Mech. 1: 252–268.
Rosenhead, L. (ed.). (1988). Laminar Boundary Layers, New York: Dover.
Schlichting, H. (1979). Boundary Layer Theory, 7th ed., New York: McGraw-Hill.
Serrin, J. (1967). “Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory.” Proc.
Roy. Soc. A299: 491–507.
Sherman, F. S. (1990). Viscous Flow, New York: McGraw-Hill.
Taneda, S. (1965). “Experimental investigation of vortex streets.” J. Phys. Soc. Japan 20: 1714–1721.
Thomson, R. E. and J. F. R. Gower (1977). “Vortex streets in the wake of the Aleutian Islands.” Monthly
Weather Review 105: 873–884.
Thwaites, B. (1949). “Approximate calculation of the laminar boundary layer.” Aero. Quart. 1: 245–280.
van Dyke, M. (1975). Perturbation Methods in Fluid Mechanics, Stanford, CA: The Parabolic Press.
von Karman, T. (1921). “
¨
Uber laminare und turbulente Reibung.” Z. Angew. Math. Mech. 1: 233–252.
Wen, C.-Y. and C.-Y. Lin (2001). “Two-dimensional vortex shedding of a circular cylinder.” Phys. Fluids
13: 557–560.
Yih, C. S. (1977). Fluid Mechanics: A Concise Introduction to the Theory, Ann Arbor, MI: West River
Press.