402 Thin film growth
© Woodhead Publishing Limited, 2011
[21] Karabacak T, Zhao Y P, Wang G C and Lu T M (2001), ‘Growth-front roughening
in amorphous silicon lms by sputtering’, Phys. Rev. B, 64, 085323.
[22] Karabacak T, Zhao Y P, Wang G c and lu T M (2002), ‘Growth front roughening
in silicon nitride lms by plasma-enhanced chemical vapor deposition’, Phys. Rev.
B, 66, 075329.
[23] Xu X and Goodman D W (1992), ‘Metal deposition onto oxides: an unusual low initial
sticking probability for copper on SiO
2
’, Appl. Phys. Lett., 61, 1799–1801.
[24] van Veldhuizen E M and de Hoog F J (1984), ‘Analysis of a Cu-Ne hollow cathode
glow discharge at intermediate currents’, J. Phys. D: Appl. Phys., 17, 953–968.
[25] Bogaerts A, Naylor J, Hatcher M, Jones W J and Mason R (1998), ‘Inuence
of sticking coefcients on the behavior of sputtered atoms in an argon glow
discharge: modeling and comparison with experiment’, J. Vac. Sci. Technol. A,
16, 2400–2410.
[26] Obara K, Fu Z, Arima M, Yamada T, Fujikawa T, Imamura N and Terada N
(2002), ‘collision processes between sputtered particles on high speed rotating
substrate and atomic mass dependence of sticking coefcient’, J. Crystal Growth,
237–239, 2041–2045.
[27] Migita S, Sakai K, Ota H, Mori Z and Aoki R (1996), ‘The inuence of Bi-sticking
coefcient in the growth of Bi(2212) thin lm by ion beam sputtering’, Thin Solid
Films, 281–282, 510–512.
[28] bogaerts A, Wagner e, Smith b W, Winefordner J D, Pollmann D, Harrison W
W and Gijbels R (1997), ‘Three-dimensional density proles of sputtered atoms
and ions in a direct current glow discharge: experimental study and comparison
with calculations’, Spectrochimica Acta Part B, 52, 205–218.
[29] Toprac A J, Jones b P, Schlueter J and cale T S (1995), ‘Modeling of collimated
titanium nitride physical vapor deposition using a combined specular-diffuse
formulation’, Mat. Res. Soc. Symp. Proc., 355, 575.
[30] Yamazaki O, Iyanagi K, Takagi S and Nanbu K (2002), ‘Modeling of Cu transport in
sputtering using a Monte Carlo simulation’, Jpn. J. Appl. Phys., 41, 1230–1234.
[31] liu D, Dew S K, brett M J, Smy T and Tsai W (1994), ‘compositional variations
in Ti-W lms sputtered over topographical features’, J. Appl. Phys., 75, 8114–
8120.
[32] buss r J, Ho P, breiland W G and coltrin M e (1988), in rubloff G W, Deposition
and Growth: Limits for Microelectronics, AIP Conf. Proc. 167, 34.
[33] buss r J, Ho P, breiland W G and coltrin M e (1988), ‘reactive sticking
coefcients for silane and disilane on polycrystalline silicon’, J. Appl. Phys., 63,
2808–2819.
[34] Tsai c c, Shaw J G, Wacker b and Knights J c (1987), ‘Film growth mechanisms
of amorphous silicon in diode and triode glow discharge systems’, Mat. Res. Soc.
Symp. Proc., 95, 219.
[35] Perrin J and broekhuizen T (1987), ‘Modeling of Hg(
3
P
1
) photosensitization of
SiH
4
and surface reactions of the SiH
3
radical’, Mat. Res. Soc. Symp. Proc., 75,
201–208.
[36] Perrin J and Broekhuizen T (1987), ‘Surface reaction and recombination of the SiH
3
radical on hydrogenated amorphous silicon’, Appl. Phys. Lett., 50, 433–435.
[37] Robertson R and Gallagher A (1986), ‘Mono- and disilicon radicals in silane and
silane-argon dc discharges’, J. Appl. Phys., 59, 3402–3411.
[38] Robertson J (2000), ‘Growth mechanism of hydrogenated amorphous silicon’, J.
Non-Cryst. Solids, 266–269, 79–83.
ThinFilm-Zexian-16.indd 402 7/1/11 9:46:41 AM