226 Thin film growth
© Woodhead Publishing Limited, 2011
5. obraztsov, A. n., obraztsova, e. A., Tyurnina, A. V. and Zolotukhin, A. A. Chemical
vapor deposition of thin graphite lms of nanometer thickness. Carbon 45, 2017–2021
(2007).
6. Khang, D.-Y. et al. Individual aligned single-wall carbon nanotubes on elastomeric
substrates. Nano Lett. 8, 124–130 (2008).
7. Yang, P. et al. Mirrorless lasing from mesostructured waveguides patterned by soft
lithography. Science 287, 465–467 (2000).
8. Li, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett lms. Nature
Nanotechnol. 3, 538–542 (2008).
9. Eda, G., Fanchini, G. and Chhowalla, M. Large-area ultrathin lms of reduced
graphene oxide as a transparent and exible electronic material. Nature Nanotechnol.
3, 270–274 (2008).
10. nair, R. R. et al. Fine structure constant denes visual transparency of graphene.
Science 320, 1308 (2008).
11. Lewis, J. Material challenge for exible organic devices. Mater. Today 9, 38–45
(2006).
12. Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. and Rogers, J. A. Controlled buckling
of semiconductor nanoribbons for strechable electronics. Nature Nanotechnol. 1,
201–207 (2006).
13. Khang, D.-Y., Jiang, H., Huang, Y. and Rogers, J. A. A stretchable form of single
crystal silicon for high-performance electronics on rubber substrates. Science 311,
208–212 (2006).
14 Lee, C., Wei, X., Kysar, J. W. and Hone, J. Measurement of the elastic properties
and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
15. Li, X. et al. Large-area synthesis of high-quality and uniform graphene lms on
copper foils. Science 324, 1312–1314 (2009).
16. Li, X. et al. Transfer of large-area graphene lms for high-performance transparent
conductive electrodes. Nano Lett. 9, 4359–4363 (2009).
17. Hecht, D. S. et al. Carbon nanotube lm on plastic as transparent electrode for
resistive touch screens. J. Soc. Inf. Display 17, 941–946 (2009).
18. Hass, J. et al. Why multilayer graphene on 4H-SiC(000-1) behaves like a single
sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008).
19. Sprinkle, M. et al. First direct observation of a nearly ideal graphene band structure.
Phys. Rev. Lett. 103, 226803 (2009).
20. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-
gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).
21. geng, H.-Z. et al. Effect of acid treatment on carbon nanotube-based exible
transparent conducting lms. J. Am. Chem. Soc. 129, 7758–7759 (2007).
22. Schrivera, M., Reganb, W., Losterb, M. and Zettl, A. Carbon nanostructure-aSi:H
photovoltaic cells with high open-circuit voltage fabricated without dopants. Solid
State Commun. 150, 561–563 (2010).
23. Wu, J. et al. organic light-emitting diodes on solution-processed metal nanowire
mesh transparent electrodes. ACS Nano 4, 43–48 (2010).
24. Reina, A. et al. Large area, few-layer graphene lms on arbitrary substrates by
chemical vapor deposition. Nano Lett. 9, 30–35 (2009).
25. Cai, W. W. et al. Large area few-layer graphene/graphite lms as transparent thin
conducting electrodes. Appl. Phys. Lett. 95, 123115 (2009).
26. Lee, J.-Y., Connor, S. T., Cui, Y. and Peumans, P. Solution-processed metal nanowire
mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).
ThinFilm-Zexian-09.indd 226 7/1/11 9:42:32 AM