
Badurek G, Giersig R, Gro
¨
ssinger R, Veider A, Weinfurter H
1988 Domain structure studies of hard magnetic materials by
neutron depolarisation. J. Phys. 49, C8-665–6
Becker J J 1976 Reversal mechanism in copper modified cobalt
rare earths. IEEE Trans. Magn. 12, 965–7
Becker R, Kersten M 1930 Magnetization of Ni wire under
large stress. Z. Phys. 64, 660–81
Bertotti G 1996 Energetic and thermodynamic aspects of hys-
teresis. Phys. Rev. Lett. 76, 1739–42
Bloch F 1930 Zur Theorie des Ferromagnetismus. Z. Phys. 61,
206–19
Callen H B, Callen E 1966 The present status of the temper-
ature dependence of magnetocrystalline anisotropy and the
lðl þ 1Þ power law. J. Phys. Chem. Solids 27, 1271–85
Chikazumi S 1964 Physics of Magnetism. Chaps. 7, 16
Epstein J 1900 Magnetic testing of iron sheet. Z. Elektrotech.
21, 303–7
Foner S 1956 Vibrating sample magnetometer. Rev. Sci.
Instrum. 27, 548–53
Foner S 1959 Versatile and sensitive vibrating sample magne-
tometer. Rev. Sci. Instrum. 30, 548–57
Gans R 1932 On the magnetic properties of isotropic magnetic
materials. Ann. Phys. 15, 28–44
Gro
¨
ssinger R 1981 A critical examination of the law of ap-
proach to saturation: I. Fit procedure. Phys. Stat. Solidi A
66, 665–74
Gro
¨
ssinger R, Holzer D, Kussbach C, Sassik H, Sato Turtelli
R, Sinnecker J P, Wittig E 1995 High temperature behaviour
of FINEMET ribbons in the amorphous and in the nano-
crystalline state. IEEE Trans. Magn. 31, 3883–5
Gro
¨
ssinger R, Kou X C 1996 Magnetic phase transition and
magnetocrystalline anisotropy of rare-earth transition metal
alloys. In: Leccabue F, Sagredo V (eds.) Proc. III Latin
American Workshop. World Scientific, Singapore, pp. 55–68
Gro
¨
ssinger R, Sato Turtelli R, Hong Duong Vo, Kuss C 1996
High temperature behaviour of amorphous and nanocrystal-
line soft magnetic materials. In: Leccabue F, Sagredo V (eds.)
Proc. III Latin American Workshop. World Scientific, Singa-
pore, pp. 202–15
Gro
¨
ssinger R, Wittig E, Ku
¨
pferling M, Taraba M, Reyne G,
Golovanov C, Enzberg-Mahlke B, Fernegel W, Lethuillier P,
Dudding J 1999 Large bore pulsed field magnetometer for
characterizing permanent magnets. IEEE Trans. Magn. 35,
3871–3
Hauser H 1994 Energetic model of ferromagnetic hysteresis.
J. Appl. Phys. 75, 2584–97
Herlach F 1994 Pulsed magnetic fields. In: Proc. 2nd European
Workshop on Science in 100T, Leuven, p. 31
Herzer G 1990 Grain size dependence of coercivity and permea-
bility in nanocrystalline ferromagnets. IEEE Trans. Magn.
26, 1397–402
Holzer D 1998 Low temperature properties of soft magnetic
materials. PhD Thesis, Technical University of Vienna
Jewell G W, Howe D, Schotzko C, Gro
¨
ssinger R 1992 A
method for assessing eddy current effects in pulsed mange-
tometry. IEEE Trans. Magn. 28, 3114–6
Jordan H 1927 Elektr. Nachr. Technik. 1, pp. 489, 781, 788,
796
Koch H 1991 SQUID sensors. In: Go
¨
pel W, Hesse J, Zemel J N
(eds.) Sensor. VCH, Weinheim, Germany, Vol. 5, Chap. 10
Kou X C, de Boer F R, Gro
¨
ssinger R, Wiesinger G, Suzuki H,
Kitazawa H, Takamasu T, Kido G 1998 Magnetic aniso-
tropy and magnetic phase transitions in R
2
Fe
17
with R ¼Y,
Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu. J. Magn.
Magn. Mater. 177–181, 1002–7
Kou X C, Gro
¨
ssinger R, Wiesinger G, Liu J P, de Boer F R,
Kleinschroth J, Kronmu
¨
ller H 1995a Intrinsic magnetic
properties of RFe
10
Mo
2
compounds (R ¼Y, Pr, Nd, Sm,
Gd, Tb, Dy, Ho, Er, or Tm). Phys. Rev. B 51, 8254–65
Kou X C, Sinnecker E H C P, Gro
¨
ssinger R, Wendhausen P A
P, Mu
¨
ller K H 1995b Coercivity mechanism of Zn-bonded
isotropic Sm
2
Fe
17
N
x
permanent magnets prepared by
HDDR. IEEE Trans. Magn. 31, 3638–40
Kou X C, Zhao T S, Gro
¨
ssinger R, Kirchmayr H, Li X, de Boer
F R 1993 Magnetic phase transitions, magnetocrystalline
anisotropy, and crystal-field interactions in the RFe
11
Ti se-
ries (R ¼Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, or Tm). Phys.
Rev. 47, 3231–42
Mayergoyz I D 1991 Mathematical Models of Hysteresis.
Springer, Berlin
O’Handley R C 1983 Fundamental magnetic properties. In:
Lubovsky F E (ed.) Amorphous Metallic Alloys. Butter-
worths, London, Chap. 14, p. 257
Polak C 1992 Hysteresis and magnetostriction of iron- and
cobalt-based soft magnetic alloys. PhD Thesis, Technical
University of Vienna
Schwetz M, Sato R, Turtelli R, Gro
¨
ssinger R, Sassik H 1998
Crystallization behavior in Fe–Zr–Cu–B. In: Rivas J, Lopez-
Quintela M A (eds.) Non-crystalline and Nanoscale Materials.
World Scientific, Singapore, pp. 329–36
Van Oosterhout G W 1955 A rapid method for measuring co-
ercive force and other ferromagnetic properties of very small
samples. Appl. Sci. Res. B6, 101–4
Veider A, Gro
¨
ssinger R, Badurek G, Kronmu
¨
ller H 1986 Op-
tical and neutron domain structure studies of amorphous
ribbons. J. Magn. Magn. Mater. 60, 182–94
Yoshizawa Y, Oguma S, Yamauchi K 1988 New Fe-based soft
magnetic alloys. J. Appl. Phys. 64, 6044–6
R. Gro
¨
ssinger and R. Sato
Technische Universita
¨
t Wien, Vienna, Austria
Magnetic Micro-actuators (MAGMAS)
Magnetic micro-actuators and systems (MAGMAS;
also called ‘‘MAG-MEMS,’’ (micro-electromechanical
systems)) present outstanding performance for pow-
erful integrated conversion from electrical to mechan-
ical energy. MAGMAS, due to available forces and
energies, belong to the recently appearing ‘‘Power-
MEMS’’ family. Besides, the diversity of structures
and the range of possible applications, including
distance and remote-controlled actuation, explains
the many recent publications and the large scope of
research in this field. The topics addressed range from
power energy microsources, to micromotors, micro-
actuators, microswitches, levitation and remote-
controlled magnetic micro-objects. The corresponding
devices comprise optical, electrical, radiofrequency
(RF), biomedical, and fluid dynamics applications.
MEMS are presently diversifying towards diffe-
rent principles of actuation, either electrostatic, mag-
netic, piezoelectric, or thermal, or actuation based on
506
Magnetic Micro-actuators (MAGMAS)