
by molecular beam epitaxy, recent NMR work on
thin-film NiMnSb shows a very low amount of dis-
order and of a type (Mn–Sb interchange) that does
not influence the half-metallic properties (Van Roy
et al. 2003).
3. Half-metallic Antiferromagnetism
The average magnetic moment in half-metals in the
Heusler structure is well described by a generalized
Slater–Pauling curve (Ku
¨
bler 2000). This calculated
curve shows materials with an averaged moment of
zero. Besides a nonmagnetic solution this can imply
an unusual form of magnetism: half-metallic antif-
erromagnetism (Van Leuken and De Groot 1994).
Half-metallic antiferromagnets differ from traditional
antiferromagnets, because local moments on cry-
stallographically different sites cancel. Theoretically,
they are predicted to show an unusual form of mag-
netism (Rudd and Pickett 1998). Experimentally, they
have not been realized yet (Pickett 1998).
See also: Spintronics in Semiconductor Nano-
structures
Bibliography
Akinaga H, Manago T, Shirai M 2000 Material design of half-
metallic zinc-blende CrAs and the synthesis by molecular
beam epitaxy. Jpn. J. Appl. Phys. 39, L1118–20
De Groot R A, Buschow K H J 1986 Recent developments in
half-metallic magnetism. J. Magn. Magn. Mater. 54–57,
1377–80
De Groot R A, Mueller F M, Van Engen P G, Buschow K H J
1983 A new class of materials: halfmetallic ferromagnetic.
Phys. Rev. Lett. 42, 2024–7
De Groot R A, Mueller F M, Van Engen P G, Buschow K H J
1984 Half-metallic ferromagnets and their magneto-optical
properties. J. Appl. Phys. 55, 2151–4
De Groot R A, Van der Kraan A M, Buschow K H J 1986
FeMnSb: a half-metallic ferrimagnet. J. Magn. Magn. Mater.
61, 330–6
De Wijs G A, De Groot R A 2001 Towards 100% spin-polar-
ized charge-injection: the half-metallic NiMnSb/CdS inter-
face. Phys. Rev. B 64, 020402
Fang C M, De Wijs G A, De Groot R A 2002 Spin-polarization
in halfmetals. J. Appl. Phys. 91, 8340–4
Fujii S, Ishida S, Asano S 1995 A half-metallic band structure
and Fe
2
MnZ (Z ¼Al, Si, P). J. Phys. Soc. Japan 64, 185–91
Hanssen K E H M, Mijnarends P E, Rabou L P L M, Buschow
K H J 1990 Positron-annihilation study of the half-metallic
ferromagnet NiMnSb–experiment. Phys. Rev. B 42, 1533–40
Ku
¨
bler J 1984 First principles theory of magnetism. Physica B
127, 257–63
Ku
¨
bler J 2000 Theory of itinerant electron magnetism. Pub-
lished in International Series of Monographs on Physics, 106
Mazin I I 2000 Robust half-metallicity in Fe
x
Co
1x
S
c
. Appl.
Phys. Lett. 77, 3000–2
Orgassa D, Fujiwara H, Schulthess T C, Butler W H 1999 First-
principles calculation of the effect of atomic disorder on the
electronic structure of the half-metallic ferromagnet
NiMnSb. Phys. Rev. B 60, 13237–40
Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R, Venk-
atesan T 1998 Direct evidence for a half-metallic ferromag-
net. Nature 392, 794–6
Pickett W E 1998 Spin-density-functional-based search for half-
metallic antiferromagnets. Phys. Rev. B 57, 10613–9
Pickett W E, Moodera J S 2001 Halfmetallic magnets. Phys.
Today 54, 39–44
Pickett W E, Singh D J 1996 Electronic structure and half-
metallic transport in the La
1x
Ca
x
MnO
3
system. Phys. Rev.
B 53, 1146–60
Ristoiu D, Nozie
´
res J P, Borca C N, Komesu T, Jeong H K,
Dowben P A 2000 The surface composition and spin polar-
ization of NiMnSb epitaxial thin films. Europhys. Lett. 49,
624–30
Rudd R E, Pickett W E 1998 Single-spin superconductivity:
formulation and Ginzburg–Landau theory. Phys. Rev. B 57,
557–74
Schwartz K 1986 CrO
2
predicted as a half-metallic ferromagnet.
J. Phys. F 16, L211–5
Soulen R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T,
Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera
J S, Barry A, Coey J M D 1998 Measuring the spin polar-
ization of a metal with a superconducting point contact.
Science 282, 85–8
Tanaka C T, Nowak J, Moodera J S 1999 Spin-polarized
tunneling in a half-metallic ferromagnet. J. Appl. Phys. 86,
6239–42
Van Leuken H, De Groot R A 1994 Half-metallic antiferro-
magnets. Phys. Rev. Lett. 74, 1171–3
Van Roy W, Wojcik M, Jedryka E, Nadolski S, Jalabert D,
Brijs B, Borghs G, De Boeck J 2003 Very low chemical dis-
order in epitaxial NiMnSb films on GaAs(III)B. Appl. Phys.
Lett. 83 (20), 4214–6
Weht R, Pickett W E 1999 Half metallic ferrimagnetism in
Mn
2
VAl. Phys. Rev. B 60, 13006–10
Yanase A, Siratori K 1984 Band structure of the high temper-
ature phase of Fe
3
O
4
. J. Phys. Soc. Japan 53, 312–7
Zhao J H, Matsukura F, Takamura K, Abe E, Chiba D, Ohna
H 2001 Room-temperature ferromagnetism in zinc-blend
CrSb grown by molecular beam epitaxy. Appl. Phys. Lett. 79,
2776–8
R. A. de Groot
University of Nijmegen, The Netherlands
Hard Magnetic Materials, Basic
Principles of
The progress in the field of permanent magnets has
been dramatic since the 1960s. This would have been
impossible without a fundamental understanding of
the physical phenomena responsible for hard magnet
properties, which led to the discovery of new families
of permanent magnet materials based on rare
earth(R)–transition metal (T) compounds (see Rare
Earth Magnets: Materials). The search for new com-
pounds with superior properties focuses on materials
269
Hard Magnetic Materials, Basic Pr inciples of